
Module 5-1

Client-Side Scripting

(JavaScript)

SWE 363: Web Engineering & Development

Web Application

 Understand the role of scripting languages in dynamic documents

 Learn how to write scripts using JavaScript

 Learn the core constructs of the JavaScript language

Objectives

 Internet and World Wide Web How to Program: International Edition, 5/E,
Pearson Education Inc. 2012.
 Chapter 6- JavaScript: Introduction to Scripting .
 Chapter 7: JavaScript Control Statements I
 Chapter 8: JavaScript Control Statements II
 Chapter 9: Functions
 Chapter 10: JavaScript: Arrays
 Chapter 11: Objects

 W3C- W3 Schools JavaScript Tutorial
: http://www.w3schools.com/js/js_examples.asp

 Udemy
 https://www.udemy.com/

 JSFiddle code editor
 https://jsfiddle.net/

References

http://www.w3schools.com/js/js_examples.asp
https://www.udemy.com/
https://jsfiddle.net/

 Traditionally web pages are static, i.e. never change unless the Web page itself is
changed

 Appropriate for pages where the content and styling seldom change and where the
visitor is merely a passive reader of page content.

 Not appropriate for dynamic pages where layout, styling, and content need to change
in response to visitor actions and desires.

 Examples of dynamic effects

 Display current date and time

 Put dynamic text into an HTML page

 Change picture size or lightness when user clicks on accompanying buttons

 Display block of text (e.g. revealing words definitions) when moving the mouse on top
of the underlined terms being defined

 Show contextual information in status bar

 Validating inputs to fields before submitting a form

 Etc.

Introduction

 Dynamic HTML (or DHTML) is a collection of technologies to change static
Web pages into dynamic Web pages that

 React to events initiated by the user or by the Web page itself

 So you can enhance page interactivity

 Dynamically changing elements and styles

 Generate alerts, documents, etc

 DHTML pages requires familiarity with four main topics:

 HTML/XHTML

 CSS

 JavaScript

 a scripting language that allows adding real programming to web pages

 The browser's Document Object Model (DOM)

 the collection of HTML/XHTML elements appearing on a Web page

Introduction…

 A scripting language is a lightweight programming language

 is used to enhance the functionality and appearance of web pages.

 Allow making web pages more animated and more responsive to user interaction

 Examples: JavaScript, VBScript, Jscript, Perl, etc.

 Interpreted not compiled; thus the code is executed as the page is downloaded

and rendered

 The script code can be executed either

 on the server (server-side script) or

 on the client/browser (client-side script)

Scripting Languages

 Client-Side Scripts can perform many functions such as data validation and
providing interactive feedback to the user, how:

 Code embedded in Web pages along with HTML and CSS styles,

 downloaded from the Web server to the browser, and

 then executes locally on the client (Interpreted by the browser)

 Client-side Scripting Advantages

 Boost interactivity and reduce the response time

 Data validation before going out to the server

 Assists enhancing the appearance and functionality of Web pages

 With the DOM, it gives more control over all the elements on a web page

 Client-side Scripting Disadvantages

 The browser must support the scripting language

 Scripts may have different results in different browsers

Client-Side Scripts

 JavaScript is one of the most simple, versatile and effective

languages used to extend functionality in websites.

 Originally developed by Netscape and named LiveScript

 Later, Netscape & Sun Microsystems Collaboration renamed

LiveScript to JavaScript

 Note: Jscript is Microsoft's implementation of JavaScript

What is JavaScript?

 JavaScript scripting language

 Client-side scripting enhances functionality and appearance

 Makes pages more dynamic and interactive

 Pages can produce immediate response without contacting a server

 Customization is possible on the basis of users’ explicit and implicit input

 Browser has to have a built-in (JavaScript) interpreter

 Foundation for complex server-side scripting

Are Java and JavaScript the Same?

 NO, JavaScript is completely different from Java except for

some syntactical similarities

 JavaScript - programs are interpreted in the browser

 Java - programs are compiled and can be run as stand
alone applications

 JavaScript more relaxed syntax and rules

 fewer and "looser" data types

 variables don't need to be declared

 errors often silent (few exceptions)

JavaScript is not Java

 Advantages:

 It is executed on the client side- saving bandwidth and strain on the web server.

 An easy language - easy to learn and

 It uses DOM model that provides plenty of prewritten functionality

 It is fast to the end user - As the code is executed on the user's computer, results
and processing is completed almost instantly depending on the task

 Extended functionality to web pages

 Disadvantages

 Security Issues - Javascript snippets, once appended onto web pages execute on
client servers immediately and therefore can also be used to exploit the user's
system.

 JavaScript rendering varies- Different layout engines may render Javascript
differently resulting in inconsistency in terms of functionality and interface.

JavaScript: Pros. vs Cons.

 Before you can run code
examples with JavaScript on your
computer, you may need to
change your browser’s security
settings.

 Java-enabled browser is not
automatically a JavaScript-
enabled browser

 IE9 prevents scripts on the local
computer from running by
default

 Firefox, Chrome, Opera, Safari
(including on the iPhone) and
the Android browser have
JavaScript enabled by default.

Enabling the Browser

Enabling JavaScript in Internet Explorer

 JavaScript can be linked to an HTML page in a number of ways:

 Inline

 Embedded

 External

 External is the preferred method for cleanliness and ease of maintenance.

 Running JavaScript scripts in your browser requires (1) downloading the
JavaScript code to the browser and then (2) running it.

 >> Pages with lots of scripts could potentially run slowly, resulting in a
degraded experience while users wait for the page to load.

 Different browsers manage the downloading and loading of scripts in
different ways, which are important things to realize when you decide how to
link your scripts.

Where Does JavaScript Go?

 Inline JavaScript refers to the practice of including JavaScript code directly within certain
HTML attributes

 In fact, inline JavaScript is much worse than inline CSS.

 For maintenance, it requires scanning through almost every line of HTML looking for your
inline JavaScript.

 >> It is a bad practice. Don't write code like this if at all possible.

Inline JavaScript (in HTML)

<body>

Click Me

</body>

<body>

<input type="button” onclick="alert('Are you sure?');" />

</body>

 It refers to the practice of placing JavaScript code within a <script> element.

Embedded JavaScript

<body>

<script type="text/javascript">
document.write ("<h1>Hello World!</h1>") ;

</script>

</body>

 The type attribute is to allow you to use other scripting languages (JavaScript is the
default)

 This simple code does the same thing as just putting <h1>Hello World!</h1> in the
same place in the HTML document

 The semicolon at the end of the statement is optional (recommended)

 You need semicolons if you put two or more statements on the same line

 Forgetting the ending </script> tag for a script may prevent the browser from
interpreting the script properly and may prevent the document from loading properly

Embedded JavaScript
A Simple Script

<body>

<h1>First JavaScript Page</h1>

<script type="text/javascript">

document.write("<hr>");

document.write("Hello World Wide Web");

document.write("<hr>");

</script>

</body>

>> Like with inline JavaScript, embedded scripts can be difficult to maintain.

 JavaScript can be put in the <head> or in the <body> of an HTML document

 JavaScript functions should be defined in the <head>
 This ensures that the function is loaded before it is needed

 JavaScript in the <body> will be executed as the page loads

Note: The issue is that when you run document.write after the document has loaded, it
overwrites the entire document. If it is run before that, it does not overwrite it.
https://www.w3schools.com/js/tryit.asp?filename=tryjs_output_write_over

https://www.w3schools.com/js/tryit.asp?filename=tryjs_output_write_over

 JavaScript can be put in a separate .js file

 <script src="myJavaScriptFile.js"></script>

 Put this HTML wherever you would put the actual JavaScript code

 An external .js file lets you use the same JavaScript on multiple HTML pages

 The external .js file cannot itself contain a <script> tag

 Using .js file makes the code more reusable >> it can be included into any

HTML5 document

 A JavaScript file has to be loaded completely before the browser can begin

any other downloads (including images)

 For sites with multiple external JavaScript files, this can cause a noticeable
delay in initial page rendering.

External JavaScript

.js file
Example

 Use the src attribute to include JavaScript codes from an external file.

 The included code is inserted in place.

<html>

<head><title>First JavaScript Program</title></head>

<body>

<h1>First JavaScript Page</h1>

<script type="text/javascript"

src="myJavaScriptFile.js">

</script>

</body>

</html>

myJavaScriptFile.js

document.write("<hr>");

document.write("Hello World Wide Web");

document.write("<hr>");

cannot contain a <script> tag

 Some old browsers do not recognize script tags

 to tell those browsers to ignore what is in the <script> tag

 Use the <noscript> message </noscript> to display a message in place of
whatever the JavaScript would put there

JavaScript isn’t always available

<noscript>

Your browser does not support JavaScript.

</noscript>

<script type="text/javascript">

<!--

some JavaScript code

//-->

</script>

 An HTML element must be assigned an id for a script to refer to it:

 The assigned idValue value must be unique and composed of alphanumeric
excluding spaces

 Once an id is assigned, the HTML object can be referenced in a script:

Referencing HTML Elements

<tag id="idValue"...>

document.getElementById("idValue")

 DHTML is created commonly by changing the style properties of HTML
elements

-- Get a current style property:

-- Set a different style property:

 For example:

 We can change the color property as

Getting and Setting Style Properties

document.getElementById("id").style.property

document.getElementById("id").style.property = value

<h2 id="Head" style="color: blue"> This is a Heading</h2>

document.getElementById("Head").style.color = "red"

 variables are declared with the var keyword (case sensitive)

 types are not specified, but JS does have types

 Number, Boolean, String, Array, Object, Function, Null,

Undefined

 Strings are written inside double or single quotes. Numbers are written without
quotes.

 If you put a number in quotes, it will be treated as a text string.

 You can find out a variable's type by calling typeof

Variables

var clientName = "Connie Client";

var pi = 3.1416, x, y, name = "Dr. Dave" ;

var weight = 127.4;

var credits = 5 + 4 + (2 * 3);

 Variables declared within a function are local to that function (accessible only within that

function)

 Variables declared outside a function are global (accessible from anywhere on the page)

 In JavaScript we have the following conditional statements:

 if statement - use this statement if you want to execute some code only if a
specified condition is true

 if...else statement - use this statement if you want to execute some code if the
condition is true and another code if the condition is false

 if...else if....else statement - use this statement if you want to select one of many
blocks of code to be executed

 switch statement - use this statement if you want to select one of many blocks of
code to be executed

 For examples:

 https://www.w3schools.com/js/js_if_else.asp

 https://www.w3schools.com/js/js_switch.asp

Conditional Statements

Because most JavaScript syntax is borrowed from C (and is therefore just like

Java), we won’t spend much time on it.. But they are required

https://www.w3schools.com/js/js_if_else.asp
https://www.w3schools.com/js/js_switch.asp

Example: Dynamic Welcome Page

<script type="text/javascript">

var txt;

var person = prompt("Please enter your name:", "XYZ");

if (person == null || person == "") {

txt = "User cancelled the prompt.";

} else {

txt = "Hello " + person + "!";

}

document.write(txt);

</script>

 JavaScript supports different kinds of loops:

 for - loops through a block of code a number of times

 for/in - loops through the properties of an object

 while - loops through a block of code while a specified condition is true

 do/while - also loops through a block of code while a specified condition is true

 For Examples:

 https://www.w3schools.com/js/js_loop_for.asp

 https://www.w3schools.com/js/js_loop_while.asp

 https://www.w3schools.com/js/js_break.asp

JavaScript Loops

https://www.w3schools.com/js/js_loop_for.asp
https://www.w3schools.com/js/js_loop_while.asp
https://www.w3schools.com/js/js_break.asp

 The for/in statement loops through the properties of an object.

 The block of code inside the loop will be executed once for each property.

JavaScript for/in Statement

for (var in object) {

code block to be executed

}

var Required. A variable that iterates over the properties of an object

object Required. The specified object that will be iterated

<p id="demo"></p>

<script>

var person = {fname:"John", lname:"Doe", age:25};

var text = "";

var x;

for (x in person) {

text += person[x] + " "; }

document.getElementById("demo").innerHTML = text;

</script>

Statement Keywords

https://www.w3schools.com/js/js_statements.asp

Keyword Description

break Terminates a switch or a loop

continue Jumps out of a loop and starts at the top

do ... while Executes a block of statements, and repeats the block, while a condition is
true

for Marks a block of statements to be executed, as long as a condition is true

function Declares a function

if ... else Marks a block of statements to be executed, depending on a condition

return Exits a function

switch Marks a block of statements to be executed, depending on different cases

try ... catch Implements error handling to a block of statements

var Declares a variable

https://www.w3schools.com/js/js_statements.asp

 Arithmetic operators (all numbers are floating-point):
+ - * / % ++ --

 Comparison operators:
< <= == != >= >

 Logical operators:
&& || ! (&& and || are short-circuit operators)

 Bitwise operators:
& | ^ ~ << >> >>>

 Assignment operators:
+= -= *= /= %= <<= >>= >>>= &= ^= |=

 String operator:
+ (concatenation)

 The conditional operator:
condition ? value_if_true : value_if_false

 Special equality tests:

 == and != try to convert their operands to the same type before performing the test

 === and !== consider their operands unequal if they are of different types

 Additional operators (to be discussed):
new typeof void delete

Operators

https://www.w3schools.com/js/js_operators.asp

https://www.w3schools.com/js/js_operators.asp

Example

<!DOCTYPE html>

<html> <body>

<p>Input your age and click the button:</p>

<input id="age" value="15" />

<button onclick="myFunction()">Try it</button>

<p id="demo"></p>

<script>

function myFunction() {

var age, voteable;

age = document.getElementById("age").value;

voteable = (age < 18) ? "Too young":"Old enough";

document.getElementById("demo").innerHTML = voteable +

"to vote.";

}

</script>

</body> </html>

https://www.w3schools.com/js/tryit.asp?filename=tryjs_comparison

https://www.w3schools.com/js/tryit.asp?filename=tryjs_comparison

 A JavaScript function is a block of code designed to perform a particular task.

 A JavaScript function is executed when "something" invokes it (calls it).

JavaScript Functions

<h2>JavaScript Functions</h2>

<p>This example calls a function to perform a calculation </p>

<p id="demo"></p>

<script>

function myFunction(a, b) {

return a * b;

}

var x= window.prompt("Enter first number: ", 0);

var y= window.prompt("Enter Second number:", 0);

document.getElementById("demo").innerHTML = myFunction(x, y);

</script>

 You can call the function in any statement or to handle user events, e.g.

<p id=“demo” onclick="ChangeStyle() " >

Another Example

<p id="demo"> This text can be changed: </p>

<button onclick="ChangeStyle()">Try it</button>

<script type="text/javascript">

function ChangeStyle() {

document.getElementById ("demo").style.fontSize = "14pt";

document.getElementById("demo").style.fontWeight = "bold";

document.getElementById("demo").style.color = "red";

}

</script>

JavaScript can change HTML content

JavaScript can change HTML attributes

JavaScript can change CSS style

JavaScript can hide HTML elements

JavaScript can show hidden HTML elements

More Examples

https://www.w3schools.com/js/tryit.asp?filename=tryjs_intro_inner_html
https://www.w3schools.com/js/tryit.asp?filename=tryjs_intro_lightbulb
https://www.w3schools.com/js/tryit.asp?filename=tryjs_intro_style
https://www.w3schools.com/js/tryit.asp?filename=tryjs_intro_hide
https://www.w3schools.com/js/tryit.asp?filename=tryjs_intro_show

 Most JavaScript syntax and statements are borrowed from C and Java, so we
won’t spend much time on it

 JavaScript is case sensitive; all keywords are lowercase

 JavaScript uses C-style comments: // and /* */

 Every statement should end with a semicolon (although it is optional unless
two or more statements appear on the same line)

 The interpreter notifies the user of a syntax error when it attempts to execute
the statement containing the error (at runtime)

General Remarks

JavaScript Objects

Examples of Objects: Window,
Document, Form

• One or more programming statements
• Function that is called from an object
• Naming Convention: uses a verb to

denote action
• Examples document.write

window.open

history.go

Methods

Properties

• Variable whose value can change
• Can be assigned values for each object
• Naming Convention: uses a noun to

denote attribute
• Examples document.bgColor

form.name

window.status

Objects can also have related Events

• Actions that can trigger other functions
• Event handlers react to specific events
• Examples onclick

onmouseover

onfocus

onload

Objects, Properties, and Methods

 JS uses many objects, but not a complete OOP language

 JS provides many built-in objects and it allows you to define and create your own

 Native objects are those objects supplied by JavaScript.

 Examples of these are String, Number, Array, Image, Date, Math, etc.

 Host objects are objects that are supplied to JavaScript by the browser environment.
Examples of these are window, document, forms, etc.

 User-defined objects are those that are defined by you, the programmer.

 A fundamental concept in JavaScript is that every element that can hold properties
and methods is an object, except for the primitive data types.

JavaScript: Object-Based Language

 The Math object allows you to perform mathematical tasks.

 Can be accessed as Math.function

The Math Object

Math.round(4.7); // returns 5
Math.round(4.4); // returns 4

Math.pow(8, 2); // returns 64
Math.sqrt(64); // returns 8

Math.abs(-4.7); // returns 4.7

Math.ceil(4.4); // returns 5
Math.floor(4.7); // returns 4

 Math.ceil(x) returns the value of x rounded up to its nearest integer:

 Math.floor(x) returns the value of x rounded down to its nearest integer

More functions: https://www.w3schools.com/jsref/jsref_obj_math.asp

https://www.w3schools.com/jsref/jsref_obj_math.asp

 An array is a special variable, which can hold more than one value at a time.

 You refer to an array element by referring to the index number.

 var name = colors [0];

 With JavaScript, the full array can be accessed by referring to the array name:

Arrays

var name = []; // empty array

var name = [value, value, ..., value]; // pre-filled

name[index] = value; // store element

var colors = ["red", "green", "blue"];

document.getElementById("demo").innerHTML = colors[0];

var colors = ["red", "green", "blue"];

document.getElementById("demo").innerHTML = colors;

 Arrays are a special type of objects.

 It can be defined using the new operator,

 Arrays in JavaScript are “dynamic” entities (objects) that can change size after
they are created

 JavaScript reallocates an Array when a value is assigned to an element that is outside
the bounds of the original Array

 Elements between the last element of the original Array and the new element have
undefined values

 Referring to an element outside the Array bounds is normally a logical error.

 Each array has a length attribute that be used to get the size of the array, e.g.

Arrays..

var names = new Array(5) ;

arrayname.length

 You can iterate through all elements of an array using for-loop or for-in loop

 How to use the array to show pictures randomly?

 store the names of the image files as strings

 Then , access the array using a randomized index

Arrays..

var pictures = ["CPE", "EPT", "GPP", "GUI", "PERF", "PORT", "SEO"];

document.write ("<img src = \"" +

pictures[Math.floor(Math.random() * 7)] + ".gif\" />");

for (var i = 0; i < theArray.length; i++) total1 += theArray[i];

for (var element in theArray) total2 += theArray[element];

 To pass the array names to the function outputArray()

outputArray(names);

 In the function header, specify a parameter that will receive the array, e.g.

function outputArray(b)

Passing Arrays to Functions

<script type="text/javascript">

var a= [3,4,5];

document.write(a);

document.write("
" + renderData(a));

document.write("
" + a);

function renderData(a){

a.push(7);

return a.length;

}

</script>

Method Description

concat() Joins two or more arrays, and returns a copy of the joined arrays

fill() Fill the elements in an array with a static value

filter() Creates a new array with every element in an array that pass a test

find() Returns the value of the first element in an array that pass a test

findIndex() Returns the index of the first element in an array that pass a test

forEach() Calls a function for each array element

indexOf() Search the array for an element and returns its position

join() Joins all elements of an array into a string

pop() Removes the last element of an array, and returns that element

push() Adds new elements to the end of an array, and returns the new length

…….

Array methods

https://www.w3schools.com/jsref/jsref_obj_array.asp

https://www.w3schools.com/jsref/jsref_concat_array.asp
https://www.w3schools.com/jsref/jsref_fill.asp
https://www.w3schools.com/jsref/jsref_filter.asp
https://www.w3schools.com/jsref/jsref_find.asp
https://www.w3schools.com/jsref/jsref_findindex.asp
https://www.w3schools.com/jsref/jsref_forEach.asp
https://www.w3schools.com/jsref/jsref_indexof_array.asp
https://www.w3schools.com/jsref/jsref_join.asp
https://www.w3schools.com/jsref/jsref_pop.asp
https://www.w3schools.com/jsref/jsref_push.asp
https://www.w3schools.com/jsref/jsref_obj_array.asp

 The shift() method removes the first item of an array.

 Tip: To remove the last item of an array, use the pop() method.

Array methods
Example

<html> <body>

<p>Click the button to remove the first element of the array.</p>

<button onclick="myFunction()">Try it</button>

<p id="demo"></p>

<script>

var colors = ["Red", " Blue", " Green", " White"];

document.getElementById("demo").innerHTML = colors;

function myFunction() {

colors.shift();

document.getElementById("demo").innerHTML = colors;

}

</script>

</body> </html>

https://www.w3schools.com/jsref/jsref_pop.asp

Arrays and objects

 Since Arrays are a special type of objects, the typeof operator in JavaScript returns
"object" for arrays.

 Arrays use numbers to access its "elements".

 e.g. person[0] returns John

 Objects use names to access its "members.

 e.g. person.firstName returns John

 In JavaScript,

 arrays use numbered indexes

 objects use named indexes.

var person = ["John", "Doe", 46];

var person = {firstName:"John", lastName:"Doe", age:46};

 A common question is: How do I know if a variable is an array?

 The problem is that the JavaScript operator typeof returns "object“ because a

JavaScript array is an object.

 Solution 1:

 To solve this problem ECMAScript5 defines a new method Array.isArray():

Array.isArray(colors); // returns true

 Solution 2:

 The instanceof operator returns true if an object is created by a given constructor:

colors instanceof Array // returns true

How to Recognize an Array

var colors= [“red", “blue", “green"];

typeof colors; // returns object

not supported in older browsers.

 There is no need to use the JavaScript's built-in array constructor new Array().

 Use [] instead.

 These two different statements both create a new empty array named points:

 Do Not Declare Strings, Numbers, and Booleans as Objects! They complicate

your code and slow down execution speed.

 When a JavaScript variable is declared with the keyword "new", the variable is

created as an object:

Remark

var x = new String(); // Declares x as a String object
var y = new Number(); // Declares y as a Number object
var z = new Boolean(); // Declares z as a Boolean object

var points = new Array(); // Bad
var points = []; // Good

https://www.w3schools.com/js/js_arrays.asp

https://www.w3schools.com/js/js_arrays.asp

 A JavaScript string stores a series of characters

 A string can be any text inside “double” or ‘single’ quotes.

 You can use quotes inside a string, as long as they don't match the quotes
surrounding the string:

 var answer = "He is called 'Johnny'";

JavaScript Strings

<script>

var carName1 = "Volvo XC60";
var carName2 = 'Volvo XC60';

document.getElementById("demo").innerHTML =
carName1 + "
" + carName2;

</script>

String methods

Method Description

charAt() Returns the character at the specified index (position)

charCodeAt() Returns the Unicode of the character at the specified index

concat() Joins two or more strings, and returns a new joined strings

endsWith() Checks whether a string ends with specified string/characters (T or F)

fromCharCode() Converts Unicode values to characters

includes() Checks whether a string contains the specified string/characters

indexOf() Returns the position of the first found occurrence of a specified value in a string

lastIndexOf() Returns the position of the last found occurrence of a specified value in a string

localeCompare() Compares two strings in the current locale

match() Searches a string for a match against a regular expression, and returns the
matches

repeat() Returns a new string with a specified number of copies of an existing string

http://www.w3schools.com/jsref/jsref_obj_string.asp

https://www.w3schools.com/jsref/jsref_charat.asp
https://www.w3schools.com/jsref/jsref_charcodeat.asp
https://www.w3schools.com/jsref/jsref_concat_string.asp
https://www.w3schools.com/jsref/jsref_endswith.asp
https://www.w3schools.com/jsref/jsref_fromcharcode.asp
https://www.w3schools.com/jsref/jsref_includes.asp
https://www.w3schools.com/jsref/jsref_indexof.asp
https://www.w3schools.com/jsref/jsref_lastindexof.asp
https://www.w3schools.com/jsref/jsref_localecompare.asp
https://www.w3schools.com/jsref/jsref_match.asp
https://www.w3schools.com/jsref/jsref_repeat.asp
http://www.w3schools.com/jsref/jsref_obj_string.asp

String methods

Method Description

replace() Searches a string for a specified value, or a regular expression, and returns a new string
where the specified values are replaced

search() Searches a string for a specified value, or regular expression, and returns the position
of the match

slice() Extracts a part of a string and returns a new string

split() Splits a string into an array of substrings

startsWith() Checks whether a string begins with specified characters

substr() Extracts the characters from a string, beginning at a specified start position, and
through the specified number of character

substring() Extracts the characters from a string, between two specified indices

toLowerCase() Converts a string to lowercase letters

toString() Returns the value of a String object

toUpperCase() Converts a string to uppercase letters

trim() Removes whitespace from both ends of a string

valueOf() Returns the primitive value of a String object

https://www.w3schools.com/jsref/jsref_replace.asp
https://www.w3schools.com/jsref/jsref_search.asp
https://www.w3schools.com/jsref/jsref_slice_string.asp
https://www.w3schools.com/jsref/jsref_split.asp
https://www.w3schools.com/jsref/jsref_startswith.asp
https://www.w3schools.com/jsref/jsref_substr.asp
https://www.w3schools.com/jsref/jsref_substring.asp
https://www.w3schools.com/jsref/jsref_tolowercase.asp
https://www.w3schools.com/jsref/jsref_tostring_string.asp
https://www.w3schools.com/jsref/jsref_touppercase.asp
https://www.w3schools.com/jsref/jsref_trim_string.asp
https://www.w3schools.com/jsref/jsref_valueof_string.asp

 The HTML wrapper
methods return the string
wrapped inside the
appropriate HTML tag.

 These are not standard
methods, and may not
work as expected in all
browsers.

String HTML Wrapper Methods

Method Description

big() Displays a string using a big font

bold() Displays a string in bold

fontcolor() Displays a string using a specified color

fontsize() Displays a string using a specified size

italics() Displays a string in italic

link() Displays a string as a hyperlink

small() Displays a string using a small font

strike() Displays a string with a strikethrough

sub() Displays a string as subscript text

sup() Displays a string as superscript text

https://www.w3schools.com/jsref/jsref_big.asp
https://www.w3schools.com/jsref/jsref_bold.asp
https://www.w3schools.com/jsref/jsref_fontcolor.asp
https://www.w3schools.com/jsref/jsref_fontsize.asp
https://www.w3schools.com/jsref/jsref_italics.asp
https://www.w3schools.com/jsref/jsref_link.asp
https://www.w3schools.com/jsref/jsref_small.asp
https://www.w3schools.com/jsref/jsref_strike.asp
https://www.w3schools.com/jsref/jsref_sub.asp
https://www.w3schools.com/jsref/jsref_sup.asp

 The Date object is used to work with dates and times.

 Date objects are created with new Date()

 There are four ways of instantiating a date:

var d = new Date();
var d = new Date(milliseconds);
var d = new Date(dateString);
var d = new Date(year, month, day, hours, minutes, seconds, milliseconds);

 A JavaScript date can be written

 as a string: Sun Aug 06 2017 15:36:38 GMT+0300 (Arab Standard Time)

 as a number: 1502022998304

 Dates written as numbers, specifies the number of milliseconds since January 1, 1970,
00:00:00.

Date Object

 Get methods are used for getting a part of a date.

Date Methods
Get Methods

Method Description

getDate() Get the day as a number (1-31)

getDay() Get the weekday as a number (0-6)

getFullYear() Get the four digit year (yyyy)

getHours() Get the hour (0-23)

getMilliseconds() Get the milliseconds (0-999)

getMinutes() Get the minutes (0-59)

getMonth() Get the month (0-11)

getSeconds() Get the seconds (0-59)

getTime() Get the time (milliseconds since January 1, 1970)

http://www.w3schools.com/jsref/jsref_obj_date.asp

http://www.w3schools.com/jsref/jsref_obj_date.asp

Date Object functions

http://www.w3schools.com/jsref/jsref_obj_date.asp

Method Description

setHours() Sets the hour of a date object

setMilliseconds() Sets the milliseconds of a date object

setMinutes() Set the minutes of a date object

setMonth() Sets the month of a date object

setSeconds() Sets the seconds of a date object

setTime() Sets a date to a specified number of milliseconds after/before January 1,
1970

setFullYear() Sets the year of a date object

toDateString() Converts the date portion of a Date object into a readable string

toString() Converts a Date object to a string

valueOf() Returns the primitive value of a Date object as milliseconds

http://www.w3schools.com/jsref/jsref_obj_date.asp
https://www.w3schools.com/jsref/jsref_sethours.asp
https://www.w3schools.com/jsref/jsref_setmilliseconds.asp
https://www.w3schools.com/jsref/jsref_setminutes.asp
https://www.w3schools.com/jsref/jsref_setmonth.asp
https://www.w3schools.com/jsref/jsref_setseconds.asp
https://www.w3schools.com/jsref/jsref_settime.asp
https://www.w3schools.com/jsref/jsref_setfullyear.asp
https://www.w3schools.com/jsref/jsref_todatestring.asp
https://www.w3schools.com/jsref/jsref_tostring_date.asp
https://www.w3schools.com/jsref/jsref_valueof_date.asp

JavaScript Events

 Event Handler – a segment of codes (usually a function) to be executed when an event
occurs

 Action that occurs, such as a user clicking a link or button, or user entering data in a form
textbox

 HTML events are "things" that happen to HTML elements.

 When JavaScript is used in HTML pages, JavaScript can "react" on these events.

 An HTML event can be something the browser does, or something a user does. Such as

 An HTML web page has finished loading

 An HTML input field was changed

 An HTML button was clicked

 A user clicks on a link in a page

 …..

 Often, when events happen, you may want to do something.

 JavaScript lets you execute code when events are detected.

Event Handlers

 HTML allows event handler attributes, with JavaScript code, to be added to
HTML elements.

 JavaScript functions can be set as event handlers

 when you interact with the element, the function will execute

 onclick is just one of many event HTML attributes we'll use

 but popping up an alert window is disruptive and annoying

 A better user experience would be to have the message appear on the page...

Event Handlers …

<button onclick="myFunction();">Click me!</button>

 Common HTML Events

Event Handlers

Event Description

onchange An HTML element has been changed

onclick The user clicks an HTML element

onmouseover The user moves the mouse over an HTML element

onmouseout The user moves the mouse away from an HTML element

onkeydown The user pushes a keyboard key

onload The browser has finished loading the page

onReset The form is reset

onUnLoad The user closes a document or a frame

onResize A form is resized by the user

https://www.w3schools.com/js/js_events.asp

https://www.w3schools.com/js/js_events.asp

 Another way is to use inline scripts, i.e. put the script inside the event
handler itself:

 Note

 The <script> tag is not necessary in this case

 Quoted values inside the script must be enclosed in single quotes (apostrophes)
to alternate and differentiate the sets of quote marks.

 The paragraph “MyTag” (containing the script) refers to itself in the script

Event Handlers

<p id="MyTag"

onclick="document.getElementById('MyTag').style.fontSize='14pt';

document.getElementById('MyTag').style.fontWeight='bold';

('MyTag').style.color='red'"> This is a paragraph

thdocument.getElementByIdat has its color changed.</p>

onlclick Event
Example 1: To access a particular element’s value

<body>

<input id="FirstNo" type="text" value="10" />

<input id="SecondNo" type="text" value="20" />

<input type="button" value=" = " onclick="Subtract()"/>

<input id="Output" type="text" />

<script type="text/javascript">

function Subtract() {

document.getElementById("Output").value =

document.getElementById("FirstNo").value -

document.getElementById("SecondNo").value;

}

</script>

<body>

onlclick Event
Example 2: To change a particular element’s style

<p>Hello World !</p>

<input type="button" value="Set Text" onclick="TextSize()">

<script type="text/javascript">

function TextSize() {

var ReturnedValue = window.confirm("Larger

text?");

if (ReturnedValue == true) {

document.body.style.fontSize = "32pt";

} else {

document.body.style.fontSize = "10pt";

}

}

</script>

onMouseOver Event Handler

<p id="demo" onmouseover ="ChangeStyle()"> Change the style </p>

<script type="text/javascript">

function ChangeStyle() {

document.getElementById ("demo").style.fontSize = "18pt";

document.getElementById("demo").style.fontWeight = "bold";

document.getElementById("demo").style.color = "blue";

}

</script>

onload Event handler

<html>

<head><title>Onload Event</title>

<script>

function handleOnLoad(){

window.location="https://www.google.com.sa";

}

</script>

</head>

<body onload="handleOnLoad()">

 Redirecting…

</body>

</html>

Onchange Event Handler
Example 1: change background color

<html>

<head><title>OnChange Event</title>

<script>

function handleOnChange(x){

document.bgColor=x;

}

</script>

</head>

<body>

<select onchange="handleOnChange(this.value)">

<option value=""> Select a color </option>

<option value="blue"> Blue </option>

<option value="green"> Green </option>

</select>

</body>

</html>

Onchange Event Handler
Example 2: go to a particular website

<html>

<head><title>OnChange Event</title>

<script>

function handleOnChange(x){

window.location=x;

}

</script>

</head>

<body>

<select onchange="handleOnChange(this.value)">

<option value=""> Select a website </option>

<option value="https://www.google.com.sa"> Google</option>

<option value="https://www.w3schools.com/"> W3Schools</option>

</select>

</body> </html>

Onchange Event Handler
Example 3: switch background images

<html>

<head><title>OnChange Event</title>

<script>

function handleOnChange(x){

document.body.style.backgroundImage="url('"+x+"')";

}

</script>

</head>

<body>

<select onchange="handleOnChange(this.value)">

<option value=""> Select an image </option>

<option value="images/img1.jpg"> Image 1</option>

<option value="images/img2.jpg"> Image 2 </option>

</select>

</body> </html>

setTimeOut

<html>

<head>

<script>

function waitforSeconds(){

setTimeout(functionName, 2000);

}

function functionName(){

// do some thing

}

</script>

</head>

<body onload =“waitforSeconds()”>

……

</body>

</html>

setTimeOut

User-Defined Objects

 You can create complex data structures by creating your own objects
 JavaScript allows that although it is not a full-featured OO language

 The values are written as name:value pairs (name and value separated by a
colon).

 The name:values pairs (in JavaScript objects) are called properties

 You can access object properties in two ways:

 objectName.propertyName

 or

 objectName["propertyName"]

User-Defined Objects

http://www.w3schools.com/js/js_objects.asp

var person= {firstName:“John", lastName:“Doe", id:556};

person.lastName;

person[“lastName"];

http://www.w3schools.com/js/js_objects.asp

 Adding functions to objects:

 You access an object method with the following syntax:
 objectName.methodName()

Example

document.getElementById("demo").innerHTML = person.fullName();

User-Defined Objects..

var person = {
firstName: "John",
lastName : "Doe",
id : 556,

fullName : function() {
return this.firstName + " " + this.lastName;

}
};

Create object using Literal Constructor

<script type="text/javascript">

var blogpost ={
title:"JavaScript“,
text: "It is a powerful !“,

displayDetails: function(){
document.write(this.title +"
");
document.write(this.text);

}
};

blogpost.displayDetails();

</script>

Object Creation using new Keyword

<html>

<head> <script type="text/javascript">

var blogpost =new Object();

blogpost.title="JavaScript";

blogpost.text="It is a powerful !";

blogpost.category="UI Technology";

document.write(blogpost.title +"
");

document.write(blogpost.text +"
");

document.write(blogpost.category);

</script> </head>

<body> </body> </html>

Object Creation using Function..

<html>
<head> <script type="text/javascript">

function blogpost(title, text){
this.title = title;
this.text= text;

}

var bp1= new blogpost("JavaScript", "It is a powerful !");
document.write(bp1.title +"
");
document.write(bp1.text +"
");

var bp2= new blogpost("JQuery", "Makes JS much easier!");
document.write(bp2.title +"
");
document.write(bp2.text +"
");

</script> </head>
<body> </body> </html>

JavaScript Forms

You can start by HTML forms then go with JS

enhancement

 Form is an area in your web-page which can contain form elements.

 This area is specified by <FORM></FORM> tags.

 Form-elements are elements that allow the web-page to get data from user
by providing graphical interfaces to the users to enter their data

 Any standard HTML element (except another <form>) can be contained
within <form>

 Attributes: NAME = “name” and ACTION =“url”

 NAME: Name the form (For tasks related to user input data processing)

 ACTION: The URL of the program that will process the data when the form is submitted
.

The Form Object

 After the web page receives the data (input) from the client of the web page
by some means (such as a form elements), it needs to be processed.

 There are two possible locations for processing data

 The data can be sent thru network to a web-server machine where all such
processing requests are processed. Then the result will be sent to the client
machine which initiated the request by opening a page and filling some sort of
forms.

 The data can be processed at client machine by some tiny programs embedded
in the web page. These tiny programs are sent to client side along the web page
when the user loads the web page.

Processing Data

 JavaScript can be used to validate input data in HTML forms before sending
off the content to a server.

 Form data are typically checked by a JavaScript to see, e.g. :

 has the user left required fields empty?

 has the user entered a valid e-mail address?

 has the user entered a valid date?

 has the user entered text in a numeric field?

Validating Form Data

Form Validation

<body>

<h2> User Registration: </h2>

<form name="myform" action="login.php" onsubmit= "return validate()">

Email: <input type="text" name="email"/>

Password: <input type="password" name="password"/>

<input type="submit" value="Register"/>

</form>

<script type="text/javascript">

function validate(){

var email=document.myform.email.value;

var psw=document.myform.password.value;

if (email==""){

alert("Email is mandatory!");

return false;

} else if (psw==""){

alert("Password is mandatory!");

return false;

}else {

alert("Successful Validation !");

return true; }}

</script> </body>

Validate dropdown list

<head> <script type="text/javascript">

function validate(){

var color = document.myform.color.value;

if (color==""){

alert("Please select a color");

document.myform.color.focus();

}

}

</script> </head>

<body>

<h2> Select a Color : </h2>

<form name="myform" action="dropdown.php" onsubmit= "return validate()">

<select name="color">

<option value=""> Select a color </option>

<option value="blue"> Blue </option>

<option value="green"> Green </option> </select>

<input type="submit" value=“Submit"/>

</form> </body>

What is missing?

Validate checkbox

<head> <script type="text/javascript">

function validate(){

var valid=false;

if(document.getElementByID("javascript").checked){

valid=true;

}else if(document.getElementByID("jquery").checked){

valid=true; }

if (valid){

return true;

}else {

alert("please select at least one technology");

return false;} }

</script> </head>

<body>

<h2> Select a Technology: </h2>

<form name="myform" action="checkboxes.php" onsubmit= "return validate()">

<input type="checkbox" id="javascript" value="JavaScript"> JavaScript

<input type="checkbox" id="jquery" value="JQuery"> JQuery

<input type="submit" value="Submit"/>

</form> </body>

Validating Radio Button
<head> <script type="text/javascript">

function validateForm() {

if(document.forms["survey1"]["q1"].checked)

{ return true;

} else {

alert('Please answer all questions');

return false; } }

</script> </head>

<body>

<form name="survey1" action="add5up.php" method="post"
onsubmit="return validateForm()">

<div id="question">Q1) My programme meets my expectations</div>

Always<INPUT TYPE = 'Radio' Name ='q1' value= 'a'>

Usually<INPUT TYPE = 'Radio' Name ='q1' value= 'b'>

Rarely<INPUT TYPE = 'Radio' Name ='q1' value= 'c'>

Never<INPUT TYPE = 'Radio' Name ='q1' value= 'd'>

<input type="submit" value="addData" />

</form>

</body>

 A regular expression is an object that describes a pattern of characters.

 almost the same as in Perl or Java

 Regular expressions are patterns used to match character combinations in strings.
A regular expression can be constructed statically or dynamically

 Within slashes, such as re = /ab+c/

 With a constructor, such as re = new RegExp("ab+c")
 Used when the pattern to match is taken as user input

 Examples

 var pattern = /[0-9]/ >> matches a digit

 var pattern = /[A-Z a-z]/ >> Matches a letter

 It can specify more complex regular expressions

 E.g. match phone numbers, email addresses, url, etc

Validate the given input.. ?

Regular Expression

Abc#1234

username@gmail.com

var pattern = /pattern/attributes;

var pattern = new RegExp (pattern, attributes);

pattern.test(“ “);

Validation Using Regular Expression

 Brackets - are used to find a range of characters:

RegExp Object…

Expression Description

[abc] Find any character between the brackets

[^abc] Find any character NOT between the brackets

[0-9] Find any character between the brackets (any digit)

[^0-9] Find any character NOT between the brackets (any non-digit)

(x|y) Find any of the alternatives specified

https://www.w3schools.com/jsref/jsref_obj_regexp.asp

https://www.w3schools.com/jsref/jsref_regexp_charset.asp
https://www.w3schools.com/jsref/jsref_regexp_charset_not.asp
https://www.w3schools.com/jsref/jsref_regexp_0-9.asp
https://www.w3schools.com/jsref/jsref_regexp_not_0-9.asp
https://www.w3schools.com/jsref/jsref_regexp_xy.asp
https://www.w3schools.com/jsref/jsref_obj_regexp.asp

 Quantifiers

Validation Using Regular Expression

Quantifier Description

n+ Matches any string that contains at least one n

n* Matches any string that contains zero or more occurrences of n

n? Matches any string that contains zero or one occurrences of n

n{X} Matches any string that contains a sequence of X n's

n{X,Y} Matches any string that contains a sequence of X to Y n's

n{X,} Matches any string that contains a sequence of at least X n's

n$ Matches any string with n at the end of it

^n Matches any string with n at the beginning of it

https://www.w3schools.com/jsref/jsref_regexp_onemore.asp
https://www.w3schools.com/jsref/jsref_regexp_zeromore.asp
https://www.w3schools.com/jsref/jsref_regexp_zeroone.asp
https://www.w3schools.com/jsref/jsref_regexp_nx.asp
https://www.w3schools.com/jsref/jsref_regexp_nxy.asp
https://www.w3schools.com/jsref/jsref_regexp_nxcomma.asp
https://www.w3schools.com/jsref/jsref_regexp_ndollar.asp
https://www.w3schools.com/jsref/jsref_regexp_ncaret.asp

 Metcharacters- are characters with a special meaning:

Validation Using Regular Expression

Metacharacter Description

. Find a single character, except newline or line terminator

\s Find a whitespace character

\S Find a non-whitespace character

\d Find a digit

\D Find a non-digit character

\b Find a match at the beginning/end of a word

\B Find a match not at the beginning/end of a word

\0 Find a NUL character

\n Find a new line character

…..

https://www.w3schools.com/jsref/jsref_regexp_dot.asp
https://www.w3schools.com/jsref/jsref_regexp_whitespace.asp
https://www.w3schools.com/jsref/jsref_regexp_whitespace_non.asp
https://www.w3schools.com/jsref/jsref_regexp_digit.asp
https://www.w3schools.com/jsref/jsref_regexp_digit_non.asp
https://www.w3schools.com/jsref/jsref_regexp_begin.asp
https://www.w3schools.com/jsref/jsref_regexp_begin_not.asp
https://www.w3schools.com/jsref/jsref_regexp_nul.asp
https://www.w3schools.com/jsref/jsref_regexp_newline.asp

 The match() method searches a string for a match against a regular
expression, and returns the matches, as an Array object.

 This method returns null if no match is found.

 Example:

 Output: ain, ain, ain

JavaScript String match() Method

https://www.w3schools.com/jsref/tryit.asp?filename=tryjsref_match_regexp

var str = "The rain in SPAIN stays mainly in the plain";

var res = str.match(/ain/g);

Perform a global match (find all matches

rather than stopping after the first match)

https://www.w3schools.com/jsref/tryit.asp?filename=tryjsref_match_regexp

 The test() method tests for a match in a string.

 This method returns true if it finds a match, otherwise it returns false.

 Example:

 Output: Variable res will be true

JavaScript String test() Method

var str = "The best things in life are free";
var patt = new RegExp("e");
var res = patt.test(str);

https://www.w3schools.com/jsref/tryit.asp?filename=tryjsref_regexp_test2

https://www.w3schools.com/jsref/tryit.asp?filename=tryjsref_regexp_test

Tests for a match in a string.

Returns true or false

https://www.w3schools.com/jsref/tryit.asp?filename=tryjsref_regexp_test2
https://www.w3schools.com/jsref/tryit.asp?filename=tryjsref_regexp_test

 The exec() method tests for a match in a string.

 This method returns the matched text if it finds a match, otherwise it returns
null.

 Example:

 Output: e

JavaScript exec() Method

https://www.w3schools.com/jsref/tryit.asp?filename=tryjsref_regexp_exec2

https://www.w3schools.com/jsref/tryit.asp?filename=tryjsref_regexp_exec

var str = "The best things in life are free";
var patt = new RegExp("e");
var res = patt.exec(str);

Tests for a match in a string.

Returns the first match

https://www.w3schools.com/jsref/tryit.asp?filename=tryjsref_regexp_exec2
https://www.w3schools.com/jsref/tryit.asp?filename=tryjsref_regexp_exec

 \b : used to find a match at the beginning or end of a word. If no match is
found, it returns null.

 /\bregexp/g

Examples

var str = "Visit W3Schools";
var patt1 = /\bW3/;
var result = str.match(patt1); => W3

var str = "Visit W3Schools W3test";
var patt1 = /\bW3/g;
var result = str.match(patt1); => W3, W3

 \w: used to find a word character. A word character is a character from a-z,
A-Z, 0-9, including the _ (underscore) character.

 .

 \^ : used to find a match at the beginning or end of a string. If no match is
found, it returns null.

Examples..

var str = "Give 100%!";
var patt1 = /\w/g;
var result = str.match(patt1); => G,i,v,e,1,0,0

var str = "Is this his";
var patt1 = /^Is/g;
var result = str.match(patt1); => Is

Example 1

<head> <script type="text/javascript">

function validate(){

var exp=/^[A-Za-z]+$/;

var username =document.myform.uname.value;

var result= exp.test(username);

if (result){

alert("Validation successful");

}else{

alert("Validation failed");

return false;

}}

</script> </head>

<body>

<h2> User Registration: </h2>

<form name="myform" action="reg.php" onsubmit= "return
validate()">

User Name: <input type="text" name="uname"/>

<input type="submit" value="Submit"/>

</form> </body>

Example 2

<head> <script type="text/javascript">

function validate(){

var exp=/^[A-Za-z0-9\s]+$/;

var address =document.myform.address.value;

var result= exp.test(address);

if (result){

alert("Validation successful");

}else{

document.getElementById("err").innerHTML="Please
enter alpha numeric values only";

document.myform.address.focus();

return false;

}}

</script> </head> <body>

<h2> User Registration: </h2>

<form name="myform" action="registration.php" onsubmit=
"return validate()">

Address: <textarea name="address"></textarea>

<input type="submit" value="Submit"/>

</form> </body>

Specify number of
characters

var exp=/^[A-Za-z0-9\s]{3,10}$/;

 JavaScript to validate email address using a regex

Validate email address using a regex

Exception handling

 Exception handling in JavaScript is almost the same as in Java

 throw expression creates and throws an exception

 The expression is the value of the exception, and can be of any type (often, it's a
literal String)

 With this form, there is only one catch clause

Exception handling

try {

statements to try

} catch (e) { // Notice: no type declaration for e

exception handling statements

} finally { // optional, as usual

code that is always executed

}

 Typically, the test would be something like
e == "InvalidNameException"

Exception handling

try {

statements to try

} catch (e if test1) {

exception handling for the case that test1 is true

} catch (e if test2) {

exception handling for when test1 is false and test2

is true

} catch (e) {

exception handling for when both test1and test2 are

false

} finally { // optional, as usual

code that is always executed

}

 Programming code might contain syntax errors, or logical errors.

 Many of these errors are difficult to diagnose !!

 Code Debugging- Searching for (and fixing) errors in programming code is
called

 All modern browsers have a built-in JavaScript debugger.
 Built-in debuggers can be turned on and off, forcing errors to be reported to the

user.

 With a debugger, you can also set breakpoints (places where code execution
can be stopped), and examine variables while the code is executing.

JavaScript Debugging

https://www.w3schools.com/js/js_debugging.asp

https://www.w3schools.com/js/js_debugging.asp

