
Module 7-1

Server-Side Programming.

(Intro to PHP)

SWE 363: Web Engineering & Development

2

 Learn how to configure and prepare to implement scripts for the server-side

 Learn how to create a simple PHP web page

 Learn the Basics of PHP

Objectives

3

 Client-server model of the Web

 Server-Side Scripts

 Server-side technologies

 Why PHP?

 Applications of PHP Scripts

 How to start & install PHP

 PHP Basics

 Conditional & Looping statements

 PHP Functions

 Strings

 Arrays

 Including files

Outline

4

 Server-side development is much more than web hosting: it involves the use
of a programming technology (like PHP) to create scripts that dynamically
generate content

 When developing server-side scripts, you are writing software, like C or Java,
however with the major distinction

(1) your software runs on a web server and

(2) uses the HTTP request-response loop for most interactions with the clients

 >> This distinction is significant, since it invalidates many classic software
development patterns, and requires different thinking for many seemingly
simple software principles like data storage and memory management.

Introduction

5

 Request Response

 A web server responds to client requests
(typically from a web browser) by
providing resources such as HTML
documents. e.g.

 When a user enters a URL address into a
web browser, he’s requesting a specific
document from a web server

 The web server maps the URL to a
resource on the server (or to a file on
the server’s network) and returns the
requested resource to the client.

 When given a web page URL, a web
browser uses HTTP to request and
display the web page found at that
address.

Client-server model of the Web

What could be visible for the user?

6

 The power of the web resides not only in serving content to users, but also in

– responding to requests from users (form processing) and

– generating web pages with dynamic content.

 Server-side scripting

 have a wider range of programmatic capabilities than their client-side equivalents.

 Executes on server (e.g. PHP)

 Scripting is transparent to client: content received is normal HTML

 Code is hidden from user

 Server-side Advantages

1. Ability to interact with a relational database

2. Perform file manipulations on the server

3. Generate responses based on users’ requests

4. Security: has access to server's private data; client can't see source code

5. Script execution is hidden from the user

6. Accessibility : Server-side code is browser independent

7. Scalability -- Web-based 3-tier architecture can scale out

Server-Side Scripts

7

 ASP (Active Server Pages)- This was Microsoft’s first server-side technology. ASP code
(using the VBScript programming language) can be embedded within the HTML.

 ASP programming code is interpreted at run time, hence it can be slow in comparison to
other technologies.

 ASP.NET- This replaced Microsoft’s older ASP technology. ASP.NET is
part of Microsoft’s .NET Framework and can use any .NET programming language
(though C# is the most commonly used).

 ASP.NET is essentially limited to Windows servers.

 JSP (Java Server Pages)- JSP uses Java as its programming language and like ASP.NET it
uses an explicit object-oriented approach and is used in large enterprise web systems
and is integrated into the J2EE environment.

 JSP uses the Java Runtime Engine, thus it also uses a Just-In-Time (JIT) compiler for fast
execution time and is cross-platform.

Server-side technologies

8

 Node.js- This is a more recent server environment that uses JavaScript on the server
side.

 Node.js has its own web server software, thus eliminating the need for Apache, IIS, or some
other web server software.

 Python- is an object-oriented programming language that has many uses including
being used to create web applications.

 It is also used in a variety of web development frameworks such as Django and Pyramid.

 Ruby on Rails- This is a web development framework that uses the Ruby programming
language.

 It integrates features such as templates and engines that aim to reduce the amount of
development work required in the creation of a new site.

Server-side technologies..

9

 PHP - stands for “PHP: Hypertext Preprocessor”.

 PHP is a dynamically typed language that can be embedded directly within the HTML,

though it now supports most common object-oriented features, such as classes and

inheritance.

 By default, PHP pages are compiled into an intermediary representation called opcodes.

 PHP is a server-side scripting language designed primarily for web development but

also used as a general-purpose programming language.

Server-side technologies..

https://w3techs.com

Note: a website may use
more than one server-
side programming
language

https://w3techs.com/

10

Usage statistics and market share of PHP for
websites

https://w3techs.com/technologies/details/pl-php/all/all

https://w3techs.com/technologies/details/pl-php/all/all

11

Comparison of the usage of PHP vs. Python
for websites

https://w3techs.com/technologies/comparison/pl-php,pl-python

https://w3techs.com/technologies/comparison/pl-php,pl-python

12

 Popularity- As a result, lots of documentation, books, and web tutorials.

 PHP is easy to learn and runs efficiently on the server side

 PHP is free, open source and a platform independent- implementations exist for all major
UNIX, Linux, Mac and Windows operating systems.

 PHP supports a wide range of databases - Support for MySQL, Oracle, dbm, DB2,
PostgreSQL. It can connect to any database which provides an ODBC driver (Open Database
Connectivity Standard) – e.g. MS Access.

 Existing Libraries- PHP was originally designed for web use – lots of functions for common web-
development tasks (e.g. Sending email, XML parsing, etc.)

 Object-Oriented Programming - Similar syntax and features as C++ and Java – inheritance,
attribute visibility (private, protected), abstract classes/methods, constructors and destructors,
etc.

 PHP code can be embedded into HTML markup, or it can be used in combination with
various web template systems, web content management systems and web frameworks.

The official PHP resource: www.php.net

Why PHP?

http://www.php.net/

13

Three main areas where PHP scripts are used:

 Server-side scripting.

 Server side scripting is the first purpose of PHP. All you need to start working on a
desktop PC with PHP is a PHP Parser, a webserver (such as Apache) and a web browser
like Google Chrome.

 Command line scripting.

 If you want to use PHP on Linux or task scheduler on Windows, then you don’t really
need a web server, but only a PHP Parser. This is called “command line scripting”.

 Desktop applications.

 Although, PHP is not a suitable language for development of desktop applications, but
it supports some advanced features like PHP-GTK to write such programs.

 Use WinBinder is a (Windows only) alternative to PHP-GTK

Applications of PHP Scripts

http://gtk.php.net/
http://winbinder.org/

14

 Server-Side Scripting Language

 Must have a web server and the PHP interpreter installed.

 PHP interpreter processes pages before they are served to clients.

 Before starting PHP, you need a web host with PHP and MYSQL. For this, you

should also install a web server such as Apache.

 Apache HTTP Server, maintained by the Apache Software Foundation, is currently

the most popular web server. It’s open source software that runs on UNIX, Linux,

Mac OS X, Windows and numerous other platforms.

 MySQL is the most popular open-source database management system. It runs

on Linux, Mac OS X and Windows.

How to start & install PHP

15

 To do it locally on your PC, you can download Apache, MYSQL and PHP in your

machine. They can be downloaded separately but this also requires additional

configuration on your part.

 Thus, you can downloaded them one package:

 LAMP : Linux, Apache, MYSQL, PHP

 MAMP: Mac, Apache, MYSQL, PHP

 WAMP: Windows, Apache, MYSQL, PHP

 XAMPP: X-OS, Apache, MYSQL, PHP , Perl

 XAMPP

 Combines an Apache web server, PHP, and MySQL into one simple installation service.

 Very little configuration required by the user to get an initial system up and running.

How to start & install PHP..

All these are used for serving php
websites and acts as the local server
so that you can see your working
website without uploading it first.

16

 We will use the XAMPP integrated installer provided by the

Apache Friends website (www.apachefriends.org)

 To download: https://www.apachefriends.org/index.html

 Choose the installer for your platform. Carefully follow the

provided installation instructions and be sure to read the

entire installation page for your platform!

 Also, it is recommended to a source code editor to help writing
the code, organizing and displaying the files.

 Sublime Text is recommended for this purpose

 To download https://www.sublimetext.com/3

How to start & install PHP..

More explanation in PDF file posted in the blackboard…

http://www.apachefriends.org/
https://www.apachefriends.org/index.html
https://www.sublimetext.com/3

17

 With assuming you are using XAMPP:

 Now that the Apache HTTP Server is running on your computer, you can put
your PHP files into the server's web space (XAMPP’s htdocs folder).

 C:\xampp\htdocs

 URL of files will have localhost as address portion.

 save your file to C:\xampp\htdocs\name_file.php

 Then Visit it at: http://localhost/name_file.php

 You can create folders also to organize your work, but it should be inside
hotdocs folder..

>> Use Sublime text (or any other editor) to create the file and locate them in
your folder in the local host

How to run the code..

18

 “Internet & World Wide Web: How to Program 4th and 5th
editions”

© Pearson Education

 Lots of resources are available at http://www.php.net

 Documentation: manual

 http://www.php.net/manual/en/

 http://us2.php.net/manual/en/index.php

 Tutorials

 http://php.net/manual/en/tutorial.php

 Documented PHP functions

 http://us2.php.net/quickref.php

 W3schools tutorial

http://www.w3schools.com/php/default.asp

Useful Resources

http://www.php.net/
http://www.php.net/manual/en/
http://us2.php.net/manual/en/index.php
http://php.net/manual/en/tutorial.php
http://us2.php.net/quickref.php
http://www.w3schools.com/php/default.asp

19

 PHP is NOT case-sensitive except variables that are case-sensitive

 PHP, like JavaScript, is a dynamically typed language that can be embedded

directly within the HTML.

 Unlike JavaScript it uses classes and functions in a way consistent with other
object-oriented languages such as C++, C#, and Java.

 The syntax for loops, conditionals, and assignment is identical to JavaScript,
only differing when you get to functions, classes, and in how you define
variables.

 The most important fact about PHP is that the programming code can be
embedded directly within an HTML file.

 However, instead of having an .html extension, a PHP file will usually have the
extension .php

 >> A PHP file normally contains HTML tags, and some PHP scripting code.

PHP basics

20

 A PHP script can be placed anywhere in the document.

 To differentiate it from the HTML, PHP script must be contained within an

opening <?php tag and a matching closing ?> tag

 A PHP script is executed on the server, and the plain HTML result is sent back

to the browser.

PHP basics..

Server
Client

21

 Comments:
 // single-line comment

 # single-line comment

 /* multi-line comment */

PHP basics..

22

 Variables in PHP are dynamically typed

 Variables are also loosely typed in that a variable can be assigned different
data types over time.

 To declare a variable you must preface the variable name with the $ symbol.

 Whenever you use that variable, you must also include the $ symbol with it.

 You should note that in PHP the name of a variable is case-sensitive,

 $count and $Count are references to two different variables.

 While PHP is loosely typed, it still does have data types, which describe the
type of content that a variable can contain.

Variables and Data types

23

 Built-in types:

 int or integer : integer

 float or double : real number

 bool or boolean : logical (true/false)

 string : text string

 NULL : variable has no value

 Resource ?

 The type can change if value is changed.

 In mixed expressions, type is converted automatically.

 Can also cast, e.g. (int)$x

Data types

24

 Type conversions can be performed using function settype.

 Variables are typed based on the values assigned to them.

 Function gettype returns the current type of its argument.

Converting Between Data Types

<?php
$foo = "5bar"; // string
$bar = true; // boolean

settype($foo, "integer"); // $foo is now 5 (integer)
settype($bar, "string"); // $bar is now "1" (string)
?>

<?php
$data = array(1, 1., NULL, new stdClass, 'foo');

foreach ($data as $value) {
echo gettype($value), "\n";

}
?>

The output
integer

double

NULL

object

String

25

 Another option for conversion between types is casting (or type casting).
Casting does not change a variable’s content—it creates a temporary copy of
a variable’s value in memory.

Converting Between Data Types

<?php
$foo = 10; // $foo is an integer
$bar = (boolean) $foo; // $bar is a boolean
?>

The casts allowed are:

 (int), (integer) - cast to integer
 (bool), (boolean) - cast to boolean
 (float), (double), (real) - cast to float
 (string) - cast to string
 (array) - cast to array
 (object) - cast to object
 (unset) - cast to NULL

26

 A constant can be defined anywhere but is typically defined near the top of a
PHP file via the define() function (NO $ sign before the constant name).

 Unlike variables, constants are automatically global across the entire script.

 define(name, value, case-insensitive) case-insensitive: Default is false

Constants

<!DOCTYPE html>
<html> <body>
<?php
define("GREETING1", "Welcome to PHP!");
define("GREETING2", "Welcome to PHP again!“, true);

function myTest() {
echo GREETING1;
echo "
" . greeting2;

}
myTest();
?>
</body> </html>

27

 In PHP there are two basic ways to get output: echo and print.

 Almost the same, but:

 echo has no return value while print has a return value of 1 so it can be used in expressions.

 echo can take multiple parameters while print can take one argument.

 echo is marginally faster than print.

 The echo statement can be used with or without parentheses: echo or echo().

echo and print Statements

Notice that the text can contain HTML markup

28

 how to output text and variables with the echo statement:

 The print statement can be used with or without parentheses: print or print().

echo and print Statements..

https://www.w3schools.com/php/php_echo_print.asp

https://www.w3schools.com/php/php_echo_print.asp

29

 PHP operators for arithmetic:

 + : addition

 - : subtraction

 * : multiplication

 / : division

 % : remainder

 ++, -- : increment, decrement

 Other operators:

 = : assignment, yields value assigned

 +=, -=, etc.: operate and assign

 . (period): string concatenation

 Beware: unlike JavaScript, + is only addition. "foo" + "bar" = 0.

Operators

30

 Operators for combining boolean values:
 && : AND || : OR ! : NOT

 Boolean literals are FALSE and TRUE

 Any expression can be converted to boolean:
 0, empty string, empty array, NULL, unset variable evaluate to FALSE

 any other values evaluate to TRUE

 Comparison operators:
 == equal to

 != not equal to

 < less than

 <= less than or equal

 > greater than

 >= greater than or equal

Logical operators

31

 There are several statements in PHP that you can use to make decisions:

 The if statement

 The if...else statement

 The if...elseif....else statement

 The switch...case statement

 PHP allows an alternative form for control statements

 Replace opening brace by colon :

 Replace closing brace by endif keyword;

PHP Conditional Statements

<?php

$d = date("D");
if($d == "Fri"){
echo "Have a nice
weekend!";
} else{
echo "Have a nice day!";
}

?>

if(test) :
// statements

endif;

32

 The While Loop

 The Do...While Loop

 The For Loop

 The Foreach Loop

 Break and Continue Statements

Looping Statements

 The while loop and the do . . . while
loop are quite similar.

 The for loop in PHP has the same
syntax as the for loop in JavaScript

https://www.w3schools.com/php/default.asp

https://www.w3schools.com/php/default.asp

33

example

34

 PHP has an alternative syntax for most of its control structures (namely, the if,
while, for, foreach, and switch statements).

 the colon (:) replaces the opening curly bracket, while the closing brace is
replaced with endif; , endwhile; , endfor; , endforeach; , or endswitch;

Alternate syntax for Control structures

35

 In PHP there are two types of functions:

 A user-defined function is one that you the programmer define.

 A built-in function is one of the functions that come with the PHP environment

Functions

 Declaring a function:

function function-name ($arg1, $arg2, ...)
{

// statements

}

 Argument can be given default value
by listing as $arg=value

 Function may return a value using
return expression

36

Pass by value versus pass by reference

37

 By default, function
arguments are passed by
value.

 they are copies of the
originals

 may be changed by the
function without
affecting the originals.

 For call by reference,
precede name by &

Example

// passing by reference

// passing by value

38

 PHP has many mathematical functions.

 abs(x) : magnitude of x

 min(x,y), max(x,y) : smaller, larger of x, y

 sqrt(x) : √x

 round(x) : round x to nearest integer

 round(x,d) : round x to d digits after decimal point

 Unlike JavaScript, no Math. prefix.

Math functions

39

 String values may be enclosed in either:

 single quotes 'This is a string' or

 double quotes "Another string"

 As usual, straight quotes only!

 Difference: variables are expanded inside double quotes but not single
quotes.

 $x = 'Joe';

 $y = "Hello, $x!"; // $y = 'Hello, Joe!'

 $z = 'Hello, $x!'; // $z = 'Hello, $x!‘

 Strings may span multiple lines between opening and closing quotes.

 $str = "Line 1
Line 2"

Strings

40

 There are many built-in functions for working with strings:

 strlen(string) : length of string

 trim(string) : remove leading & trailing spaces

 str_word_count(): counts the number of words in a string

 strrev(): reverses a string

 strpos() : searches for a specific text within a string

 str_replace(): replaces some characters with some other characters in a string.

 and many more…

 See more functions

https://www.w3schools.com/php/php_ref_string.asp

String functions

https://www.w3schools.com/php/php_ref_string.asp

41

 The explode() function breaks a string into an array.

explode(separator, string, limit); // limit is optional, Specifies the number of array

// elements to return.

example
explode() function

<!DOCTYPE html>
<html> <body>

<?php
$str = 'one,two,three,four';

// zero limit
print_r(explode(',',$str,0));
print "
";

// positive limit
print_r(explode(',',$str,2));
print "
";

// negative limit
print_r(explode(',',$str,-1));
?>
</body> </html>

Array ([0] => one,two,three,four)

Array ([0] => one [1] => two,three,four)

Array ([0] => one [1] => two [2] => three)

limit:
• Greater than 0 - Returns an array with a

maximum of limit element(s)
• Less than 0 - Returns an array except for the

last -limit elements()
• 0 - Returns an array with one element

42

 Arrays in PHP are very similar to those in JavaScript
 Can contain elements of differing types

 Can grow or shrink dynamically

 Can have holes (undefined elements)

 Can be indexed by integer or keyword string

 Declaring an array:
 $a = array(); // empty array

 $a = array(value1, value2, ...); // initialized array

 Accessing an array element, numbering starts at 0: e.g. $a[1] // is value2

 In PHP, there are three types of arrays:
 Indexed arrays - Arrays with a numeric index

 Associative arrays - Arrays with named keys

 Multidimensional arrays - Arrays containing one or more arrays

Arrays

43

 To see contents of array (or other objects):

 print_r(array);

example

44

 The keys assigned to values can be arbitrary and user defined strings.

 Declaring an associative array:

 $a = array(key1 => value1, key2 => value2, ...);

 Array keys in most programming languages are limited to integers, start at 0,
and go up by 1.

 >> In PHP, keys must be either integers or strings and need not be sequential.

 Array values, unlike keys, are not restricted to integers and strings. They can be
any object, type, or primitive supported in PHP. You can even have objects of your
own types, so long as the keys in the array are integers and strings.

PHP Associative Arrays

45

 There are two ways to create an associative array:

 In PHP, arrays are dynamic, that is, they can grow or shrink in size. An element can be
added to an array simply by using a key/index that hasn’t been used, as shown below:

 You can also create “gaps” by explicitly deleting array elements using the unset() function

PHP Associative Arrays

<?php
// Define an associative array
$ages = array("Peter"=>22, "Clark"=>32, "John"=>28);

?>

<?php
$ages["Peter"] = "22";
$ages["Clark"] = "32";
$ages["John"] = "28";

?>

<?php
$ages[“Tom"] = “32";

?>
Will be added to the end of array.

46

 There are many built-in sort functions, which sort by key or by value.

 sort() - sort arrays in ascending order

 rsort() - sort arrays in descending order

 asort() - sort associative arrays in ascending order, according to the value

 ksort() - sort associative arrays in ascending order, according to the key

 arsort() - sort associative arrays in descending order, according to the value

 krsort() - sort associative arrays in descending order, according to the key

 array_rand() function returns a random key from an array

 array_reverse() function returns an array in the reverse order.

 array_walk() function runs each array element in a user-defined function. The array's keys
and values are parameters in the function.

 in_array() function searches an array for a specific value.
 shuffle() function randomizes the order of the elements in the array.

count : number of elements in array -- Only counts defined elements: skips holes
 array_push, array_pop : add/remove elements from end of array
 array_shift, array_unshift : add/remove elements from front of array

Arrays functions

Example : https://www.w3schools.com/php/php_arrays.asp

https://www.w3schools.com/php/php_arrays.asp

47

Arrays functions…

 array_walk() function runs each array element in a user-defined function. The

array's keys and values are parameters in the function.

<!DOCTYPE html>
<html>
<body>

<?php
function myfunction($value,$key)
{
echo "The key $key has the value $value
";
}
$a=array("a"=>"red","b"=>"green","c"=>"blue");
array_walk($a,"myfunction");
?>

</body>
</html>

48

 An array in which each element can also be an array and each element in the
sub-array can be an array or further contain array within itself and so on.

Multidimensional Array

<?php
// Define a multidimensional array
$contacts = array(

array(
"name" => "Peter Parker",
"email" => "peterparker@mail.com",
),
array(
"name" => "Clark Kent",
"email" => "clarkkent@mail.com",
),
array(
"name" => "Harry Potter",
"email" => "harrypotter@mail.com",
)

);
// Access nested value
echo "Peter Parker's Email-id is: " . $contacts[0]["email"];
?>

https://www.tutorialrepublic.com/php-tutorial/php-arrays.php

https://www.tutorialrepublic.com/php-tutorial/php-arrays.php

49

 by using one of two statements — var_dump() or print_r().

 The print_r() statement, however, gives somewhat less information.

Viewing Array Structure and Values

50

 Include files provide a mechanism for reusing both markup and PHP code

 It produces the same result as copying the script from the file specified and

pasted into the location where it is called.

Including files

51

 The include() and require() statement allow you to include the code

contained in a PHP file within another PHP file.

 File path is relative to script location (does not refer to URL space)

 A typical example is including the header, footer and menu file in all the

pages of a website.

Including files..

include("path/to/filename"); Or- include "path/to/filename";

require("path/to/filename"); Or- require "path/to/filename";

52

 The difference between include and require lies in what happens when the
specified file cannot be included (generally because it doesn’t exist or the
server doesn’t have permission to access it).

 With include, a warning is displayed and then execution continues.

 With require, an error is displayed and execution stops.

 include_once and require_once : same as above, but prevent including same

file twice

 It is not uncommon for a PHP page to include a file that includes other files that

may include other files, and in such an environment the include_once and

require_once statements are certainly recommended.

Including files..

