
Module 8-1

Data Description and

Transformation – XML

SWE 363: Web Engineering & Development

2

 Learn the basics of XML

 Learn about the role of DTD and XML Schemas XSD

 Learn how to manipulate and transform XML document

Objectives

3

 What is XML?

 How XML differs from HTML

 XML – Document Structure

 Namespaces

 Defining XML Data Formats

 Document Type Definition (DTD)

 XML Schemas (XSD)

 XML Parser

 XML DOM

 XML Querying and Transformation

 XSLT

 XPath

 XML Processing

Outline

4

 Programming languages
 to build applications, games, etc..

 Examples: Java, C++, etc.

 Query Languages
 to communicate with DB

 Example: SQL, XQuery

 Scripting Languages
 to write programs on a special run-time environment that automate the execution of

tasks that could alternatively be executed one-by-one by a human operator

 Example: JavaScript, etc.

 Markup Languages
 to annotate text and embed tags in accurately styled electronic documents include

HTML, XML, and XHTML

Introduction

Languages

Programming

Query

Scripting

Markup

5

 XML =eXtensible Markup Language

 A portable technology for data representation, storage, processing and exchange

 XML plays an important role in the exchange of a wide variety of data on the web

 XML defines a set of rules for encoding documents which is both human-readable
and machine-readable

 All rules are defined in XML 1.0 specification developed by W3C an open standard

 XML documents are typically files with the .xml extension

 Many parsers or APIs (Application Programming Interface) are available to process
the XML data

 An XML parser is responsible for

 identifying components of XML documents and

 then storing those components in a data structure for manipulation

What is XML?

https://www.w3schools.com/xml/default.asp

https://www.w3schools.com/xml/default.asp

6

XML Data Model: Example

Element

Element

Element

Element

7

XML Data Model: Example

<BOOKS>

<book id=“123” loc=“library”>

<author>Hull</author>

<title>California</title>

<year> 1995 </year>

</book>

<article id=“555” ref=“123”>

<author>Su</author>

<title> Purdue</title>

</article>

</BOOKS>

Freely definable tags

Element

Content of

Element

(SubElement)

Attributes with

name and their

values

8

XML Data Model: Example..

<BOOKS>

<book id=“123” loc=“library”>

<author>Hull</author>

<title>California</title>

<year> 1995 </year>

</book>

<article id=“555” ref=“123”>

<author>Su</author>

<title> Purdue</title>

</article>

</BOOKS>

Hull Purdue

BOOKS

123 555

California

Su

title
author

title

author

article

book

year

1995

ref

loc=“library”

A common way of processing XML documents is to read them into memory in a tree
structure - arbitrary tree, not binary
One way to process the in-memory XML document is to use a traversal algorithm

An XML parser does the job of reading the XML document & building the tree structure

9

 HTML and XML look similar because they are both SGML (Standard Generalized

Markup Language)

 Both HTML and XML use elements enclosed in tags

 Both use tag attributes

 XML is NOT a replacement for HTML

 XML was designed to structure, store and transport data and to focus on what data is

(not how to display)

 HTML was designed to display data and to focus on how data looks.

 HTML uses a fixed set of tags, whereas in XML, you make up your own tags
 XML tags are not predefined

 XML allows the author to define his own tags and his own document structure

 HTML uses a fixed, predefined, unchangeable set of tags
 The author of HTML documents can only use tags that are defined in the HTML standard

 HTML is for humans, while XML is for computers

XML differs from HTML

10

 XML is everywhere

 Allows for high degree of interoperability, i.e. representation of data across
heterogeneous environments (Cross platform)

XML Usage

Documents
Configuration

Database

Application X

Repository

XML XML

XML XML

11

 XML documents are used to transfer/exchange data often over the Internet.

 XML can be used for offloading and reloading of databases.

 XML can easily be merged with style sheets to create almost any desired output.

 Virtually, any type of data can be expressed as an XML document.

 XML is a meta-language >> used to create new web languages. A lot of Web
languages are created with XML such as

 WSDL (Web Services Description Language) for describing available web services

 RSS (Really Simple Syndication) languages for news feeds

 RDF (Resource Description Framework) and OWL (Web Ontology Language) for
describing resources and ontology

 SMIL (Synchronized Multimedia Integration Language) for describing multimedia for
the web

XML Usage

12

XML Document - Example

<?xml version="1.0" encoding="UTF-8"?>

<bookstore>

<book category="cooking">

<title lang="en">Everyday Italian</title>

<author>Giada De Laurentiis</author>

<year>2005</year>

<price>30.00</price>

</book>

<book category="children">

<title lang="en">Harry Potter</title>

<author>J K. Rowling</author>

<year>2005</year>

<price>29.99</price>

</book>

<book category="web">

<title lang="en">Learning XML</title>

<author>Erik T. Ray</author>

<year>2003</year>

<price>39.95</price>

</book>

</bookstore>

13

 Every XML-document is text-based
 => sharing data between different computers

 => sharing data in internet

 => platform independence

 An XML document is a structured collection of text format markup tags

 Each tag either defines:
 some information used to describe how the document is to be interpreted

 some data contained within the document

 Tags in XML documents fall into the following categories:

 Comments:
 XML, like Java and HTML, has a means of adding comments to a document

<!-- comments in XML look like this -->

XML – Document Structure

14

 XML Declaration:

 It identifies the document as an XML document.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

 The XML declaration is not required by browsers, but is required by most XML
processors (>> so include it!)

 If present, the XML declaration must be at top of the XML document -not even
whitespace should precede it

 version="1.0" is required

 encoding can be "UTF-8" (ASCII) or "UTF-16" (Unicode), or something else,
or it can be omitted

 standalone tells whether there is a separate DTD

 DTD declarations

 DTD (Document Type Definition) specifies the semantic constraints

<!DOCTYPE addressBook SYSTEM …….path\addressBook.dtd">

XML – Document Structure..

15

 Elements:

 An XML element is everything from the element's start tag to the element's end
tag. It may Contain data values or other XML elements.

 Elements are defined between “<“ and “>” characters

 XML Elements have simple naming rules

 Attributes:

 Attributes are name/value pairs associated with elements

 Data can be stored in child elements or in attributes

 Should you avoid using attributes?

XML – Document Structure..

 Here are some of the problems using attributes:
 attributes cannot contain multiple values (child elements can)

 attributes are not easily expandable (for future changes)

 attributes cannot describe structures (child elements can)

 attributes are more difficult to manipulate by program code

 attribute values are not easy to test against a DTD - which is used
to define the legal elements of an XML document

16

Example: XML Attributes

<note date="10/01/2008">

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

<note>

<date>

<day>10</day>

<month>01</month>

<year>2008</year>

</date>

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

Using attributes:

Using elements:

17

XML Namespaces

Semantics of the description element is ambigous
Content may be defined differently Renaming may be impossible (standards!)

An XML instance may contain element or attribute names from more than one XML
vocabulary. If each vocabulary is given a namespace, the ambiguity between identically

named elements or attributes can be resolved.

18

 XML Namespaces provide a method to avoid element name conflicts.

 Namespaces identify that elements in the document come from different sources:

 This often results in a conflict when trying to mix XML documents from different XML
applications.

 you can mix different namespaces in the same document

 namespace appears as prefix on element/attribute

 At the top of each document, you need to declare the namespaces used by that
document

XML Namespaces..

<dbs:book xmlns:dbs=“http://www-dbs/dbs“>

Unique URI to identify

the namespace

Signal that namespace

definition happens

Prefix as abbrevation of

URI

https://www.w3schools.com/xml/xml_namespaces.asp

https://www.w3schools.com/xml/xml_namespaces.asp

19

 Namespaces are first declared at the root element containing the elements
belonging to the namespace.

 eg:

<Address:addressBook

xmlns:Address=“http://www.xyz.com/addressBook”>

 Elements in an XML document can be marked with a namespace.

 The namespace is a prefix to the element name –

 the format for the element tag is:

<namespace : elementName>

Data

</namespace : elementName>

XML Namespaces..

20

<?xml version=“1.0” encoding=“UTF-8”?>

<addressBook>

<entry list=“person”>

<name> Ms Smith </name>

<address> 1 Central RD, Sydney </addres>

<phone>555 5555</phone>

</entry>

<entry list=“business”>

<name> Mr Suit </name>

<address> 1 George St, Sydney </addres>

<phone>555 6666</phone>

</entry>

</addressBook>

XML Namespaces: example

Without namespaceWith namespace

21

 As a human, it's easy for you to see the structure:

 Elements, Attributes, Entity references, Comments, Processing instructions,
CDATA sections

 But to be any real use, XML has to be read by a computer application

 not just read it as a single chunk of ASCII text

 need to parse XML document to recognize the structure

 Human beings are quite good at discovering the meaning in written text.
 E.g. Give to x the value 5 ≡ Give the value 5 to x (same word, different order)

 XML is a well-structured format that can easily be parsed by computer
programs.

What else..

Defining XML Data Formats

23

 Often you need to add a grammar (Rules) to structure a XML document

 to define allowed tags, elements, attributes and their order and data types

 to allow validation of XML documents to check its conformity to the grammar
expressed by the schema

 Well formed vs Valid

 "Well Formed" XML document follows the basic syntax of XML

 ”Valid" XML document conforms to the extra rules contained in a the
corresponding DTD (or associated XML Schema) file.

 e.g. each book can have many authors, but only one publisher

 An XML document validated against a DTD is both "Well Formed" and "Valid”.

Document Type Definitions

24

 Linking DTD and XML Docs

 <!DOCTYPE note SYSTEM "Note.dtd">

keywords Root element URI for the DTD

>> The DOCTYPE declaration, in the example above, is a reference to an
external DTD file.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE note SYSTEM "Note.dtd">

<note>

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

<!DOCTYPE note

[

<!ELEMENT note (to,from,heading,body)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT heading (#PCDATA)>

<!ELEMENT body (#PCDATA)>

]>

25

 The purpose of a DTD is to define the structure of an XML document. It
defines the structure with a list of legal elements:

 !DOCTYPE note defines that the root element of the document is note

 !ELEMENT note defines that the note element must contain the elements: "to,
from, heading, body"

 !ELEMENT to defines the to element to be of type "#PCDATA"

 !ELEMENT from defines the from element to be of type "#PCDATA"

 !ELEMENT heading defines the heading element to be of type "#PCDATA"

 !ELEMENT body defines the body element to be of type "#PCDATA"

Document Type Definitions..

<!DOCTYPE note

[

<!ELEMENT note (to,from,heading,body)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT heading (#PCDATA)>

<!ELEMENT body (#PCDATA)>

]>

PCDATA: parsed

character data

26

 Key DTD‘s limitations:

 It doesn‘t support basic data types: int, doubles, dates, … (everything is text)

 No structured, self-definable data types

 It doesn’t use XML syntax

 It doesn’t provide enough support for namespace

 Very limited for reusability and extensibility

Alternative XML Schema
 Expressed in XML (use XML syntax)

 More expressive than DTDs

 Supporting Namespace and import/include

 More data types

 Able to create complex data

 Usable by various XML applications

 More …

Flaws of DTDs

27

<?xml version="1.0" encoding="utf-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="book">

<xs:complexType>

<xs:sequence>

<xs:element name="title" type="xs:string"/>

<xs:element name="author" type="xs:string"/>

<xs:element name=“qualification“ type=“xs:string”/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

book.xsd

Simplified XML Schema Example

Often represented as a separate XML document (.xsd)

<?xml version="1.0"?>

<book xmlns:xs="http://www.w3.org/2001/XMLSchema"

xs:noNamespaceSchemaLocation="book">

<title> Being a Dog Is a Full-Time Job</title>

<author>Charles M. Schulz</author>

<qualification> extroverted beagle </qualification>

</book>

XML document

28

 XML Schemas have predefined data types

XML Schema data types

Data Type Description Facets

string Represents character strings. length, pattern, maxLength, minLength,
enumeration, whiteSpace

boolean Represents Boolean values,
which are either true or false.

pattern, whiteSpace

decimal Represents arbitrary precision
numbers.

enumeration, pattern, totalDigits,
fractionDigits, minInclusive, maxInclusive,
maxExclusive, whiteSpace

float Represents single-precision 32-
bit floating-point numbers.

pattern, enumeration, minInclusive,
minExclusive, maxInclusive, maxExclusive,
whiteSpace

More….

https://www.w3schools.com/xml/schema_facets.asp

https://www.w3schools.com/xml/schema_facets.asp

29

30

An XML Document
<?xml version="1.0" encoding="UTF-8"?>

<shiporder orderid="889923"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="shiporder.xsd">

<orderperson>John Smith</orderperson>
<shipto>
<name>Ola Nordmann</name>
<address>Langgt 23</address>
<city>4000 Stavanger</city>
<country>Norway</country>

</shipto>
<item>
<title>Empire Burlesque</title>
<note>Special Edition</note>
<quantity>1</quantity>
<price>10.90</price>

</item>
<item>
<title>Hide your heart</title>
<quantity>1</quantity>
<price>9.90</price>

</item>
</shiporder>

• root element, "shiporder“
• required attribute called "orderid"

• The "shiporder" element contains
three different child elements:
"orderperson", "shipto" and "item".

• The "item" element appears twice,
and it contains a "title", an optional
"note" element, a "quantity", and a
"price" elements.

• xmlns:xsi=“……" tells the XML
parser that this document should
be validated against a schema.

• xsi:noNamespaceSchemaLocati
on="shiporder.xsd" specifies
WHERE the schema resides

31

 simply follow the structure in the XML document and define each element as you find
it.

 xs is the standard namespace, and the associated URI is the Schema language definition,
which has the standard value: http://www.w3.org/2001/XMLSchema

 Next, we have to define the "shiporder" element. This element has an attribute and it
contains other elements, therefore we consider it as a complex type.

How to create an XML Schema

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
...
</xs:schema>

<xs:element name="shiporder">
<xs:complexType>

<xs:sequence>
...

</xs:sequence>
</xs:complexType>

</xs:element>

The child elements of the "shiporder"
element is surrounded by a
xs:sequence element that defines an
ordered sequence of sub elements

32

 "orderperson" element is defined as a simple type (because it does not
contain any attributes or other elements).

 Next, define two elements that are of the complex type: "shipto" and "item"

how to create an XML Schema..

<xs:element name="orderperson" type="xs:string"/>

<xs:element name="shipto">
<xs:complexType>

<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="address" type="xs:string"/>
<xs:element name="city" type="xs:string"/>
<xs:element name="country" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>

With schemas we can define the number of possible occurrences for an element with the maxOccurs and
minOccurs attributes.

33

 Now you can define the "item" element.

 To declare the attribute of the "shiporder" element. Since this is a required
attribute  specify use="required".

 Note: The attribute declarations must always come last:

how to create an XML Schema..

<xs:attribute name="orderid" type="xs:string" use="required"/>

<xs:element name="item" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>
<xs:element name="title" type="xs:string"/>
<xs:element name="note" type="xs:string" minOccurs="0"/>
<xs:element name="quantity" type="xs:positiveInteger"/>
<xs:element name="price" type="xs:decimal"/>

</xs:sequence>
</xs:complexType>

</xs:element>

34

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="shiporder">
<xs:complexType>

<xs:sequence>
<xs:element name="orderperson" type="xs:string"/>
<xs:element name="shipto">

<xs:complexType>
<xs:sequence>

<xs:element name="name" type="xs:string"/>
<xs:element name="address" type="xs:string"/>
<xs:element name="city" type="xs:string"/>
<xs:element name="country" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="item" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name="title" type="xs:string"/>
<xs:element name="note" type="xs:string" minOccurs="0"/>
<xs:element name="quantity" type="xs:positiveInteger"/>
<xs:element name="price" type="xs:decimal"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="orderid" type="xs:string" use="required"/>

</xs:complexType> </xs:element> </xs:schema>

"shiporder.xsd"

35

Restrictions for Datatypes

Constraint Description

enumeration Defines a list of acceptable values

fractionDigits Specifies the maximum number of decimal places allowed. Must be >=0

length Specifies the exact number of characters or list items allowed. Must be >= 0

maxExclusive Specifies the upper bounds for numeric values (the value must be < this value)

maxInclusive Specifies the upper bounds for numeric values (the value must be <= this value)

maxLength Specifies the maximum number of characters or list items allowed. Must be >= 0

minExclusive Specifies the lower bounds for numeric values (the value must be > this value)

minInclusive Specifies the lower bounds for numeric values (the value must be >= this value)

minLength Specifies the minimum number of characters or list items allowed. Must be >=0

pattern Defines the exact sequence of characters that are acceptable

totalDigits Specifies the exact number of digits allowed. Must be >0

whiteSpace Specifies how white space (line feeds, tabs, spaces, and carriage returns) is handled

https://www.w3schools.com/xml/schema_facets.asp

https://www.w3schools.com/xml/schema_facets.asp

XML Parser

37

 All major browsers have a built-in XML parser to access and manipulate XML.

 XML parsing is the process of reading an XML document and providing an

interface for client applications to work with XML documents.

 XML parser is a software library or a package that provides such interface

 It checks for proper format of the XML document and may also validate the XML

documents.

 The goal of a parser is to transform XML into a readable code.

XML Parser

XML Parser

38

XML Parser

XML-Parsing Standards

SAX (Simple API for XML)

DOM (Document Object Model)

39

 Event-based: SAX (Simple API for XML)

 Originally a Java-only API.

 Developed by XML-DEV mailing list community

 No tree is built

 The parser reads the file and triggers events as it finds elements/attribute/text in the
XML doc

 XML is read sequentially

 When a parsing event happens, the parser invokes the corresponding method of
the corresponding handler

 The handlers are programmer’s implementation of standard Java API (i.e.,
interfaces and classes)

 Similar to an I/O-Stream, goes in one direction

SAX Parser

40

<orders>

<order>

<onum>1020</onum>

<takenBy>1000</takenBy>

<customer>1111</customer>

<recDate>10-DEC 94</recDate>

<items>

<item>

<pnum>10506</pnum>

<quantity>1</quantity>

</item>

<item>

<pnum>10507</pnum>

<quantity>1</quantity>

</item>

<item>

<pnum>10508</pnum>

<quantity>2</quantity>

</item>

<item>

<pnum>10509</pnum>

<quantity>3</quantity>

</item>

</items>

</order>

...

</orders>

SAX Parser: Example

Example: Orders Data in XML:
• several orders, each with several items
• each item has a part number and a

quantity

Parsing Event

startDocument

endDocument

startElement

endElement

41

SAX Parser..

SAX Parser

When you see the start
of the document do …

When you see the start
of an element do … When you see the end

of an element do …

<?xml version="1.0"?>

.

.

.

42

SAX Parser..

https://www.edureka.co/blog/parsing-xml-file-using-sax-parser/

https://www.edureka.co/blog/parsing-xml-file-using-sax-parser/

43

 Object-based: DOM (Document Object Model)
 The parser loads the XML doc into computer memory and builds a tree of objects

for all elements & attributes

 The API allows for constructing, accessing and manipulating the structure and
content of XML documents

 User accesses data by traversing the tree

 The XML DOM defines the properties and methods for accessing and editing

XML.

 However, before an XML document can be accessed, it must be loaded into an

XML DOM object.

 All modern browsers have a built-in XML parser to access and manipulate XML by

converting text into an XML DOM object.

DOM Parser

44

Parsing a Text String

<html> <body>

<p id="demo"></p>

<script>

var text, parser, xmlDoc;

text = "<bookstore><book>" +

"<title>Everyday Italian</title>" +

"<author>Giada De Laurentiis</author>" +

"<year>2005</year>" +

"</book></bookstore>";

parser = new DOMParser();

xmlDoc = parser.parseFromString(text,"text/xml");

document.getElementById("demo").innerHTML =

xmlDoc.getElementsByTagName("title")[0].childNodes[0].nodeValue;

</script>

</body> </html>

Output: Everyday Italian

45

XML DOM

<?xml version="1.0" encoding="UTF-8"?>

<bookstore>

<book category="cooking">

<title lang="en">Everyday Italian</title>

<author>Giada De Laurentiis</author>

<year>2005</year>

<price>30.00</price>

</book>

<book category="children">

<title lang="en">Harry Potter</title>

<author>J K. Rowling</author>

<year>2005</year>

<price>29.99</price>

</book>

<book category="web">

<title lang="en">XQuery Kick Start</title>

<author>James McGovern</author>

<author>Per Bothner</author>

<author>Kurt Cagle</author>

<author>James Linn</author>

<author> Nagarajan</author>

<year>2003</year>

<price>49.99</price>

</book>

</bookstore>

books.xml

It views an XML document
as a tree-structure called a
node-tree.

DOM defines a standard for
accessing and manipulating
documents

>> All XML elements can be
accessed through the XML
DOM

46

 The JavaScript code to get the text from the first <title> element in books.xml:

>> Example Explained:

 xmlDoc - the XML DOM object created by the parser.

 getElementsByTagName("title")[0] - the first <title> element

 childNodes[0] - the first child of the <title> element (the text node)

 nodeValue - the value of the node (the text itself)

XML DOM: Examples

After the execution of the statement, txt will hold the value "Everyday Italian"

txt=xmlDoc.getElementsByTagName("title")[0].childNodes[0].nodeValue

47

 The getElementsByTagName() method returns a node list (an array of nodes).

 The <title> elements in x can be accessed by index number.

 To access the third <title> you can write: y=x[2];

 The length property defines the length of a node list (the number of nodes).

Node Navigation: Examples

Output:

Everyday Italian

Harry Potter

XQuery Kick Start

// assume we have loadXMLDoc() function already implemented

xmlDoc=loadXMLDoc("books.xml");

x=xmlDoc.getElementsByTagName("title");

for (i=0;i<x.length;i++)

{

document.write(x[i].childNodes[0].nodeValue);

document.write(“
");

}

xmlDoc=loadXMLDoc("books.xml");

x=xmlDoc.getElementsByTagName("title");

48

 loops through the children of the root node that have elements

Node Navigation: Examples

Output:

book

book

book

xmlDoc=loadXMLDoc("books.xml");

x=xmlDoc.documentElement.childNodes;

for (i=0;i<x.length;i++)

{

if (x[i].nodeType==1)

{//Process only element nodes (type 1)

document.write(x[i].nodeName);

document.write("
");

}

}

49

Which should we use? DOM vs. SAX

 If you need to manipulate (i.e., change) the XML – use DOM

 If you need to access the XML many times – use DOM (assuming the file is not too
large)

 You can save time and effort if you send and receive DOM objects instead of XML
files
 But, DOM object are generally larger than the source

 Thus If your document is very large and you only need to extract only a few elements
– use SAX

 Programming with SAX parsers is, in general, more efficient
 However, in some cases, it is difficult !

 How can we find, using a SAX parser, elements e1 with ancestor e2?

 How can we find, using a SAX parser, elements e1 that have a descendant element e2?

 etc...

XML Processing

51

 XML processing in PHP, JavaScript, and other modern development
environments is divided into two basic styles:

 The in-memory approach, which involves reading the entire XML file into
memory into some type of data structure with functions for accessing and
manipulating the data.

 The event or pull approach, which lets you pull in just a few elements or lines at a
time, thereby avoiding the memory load of large XML files.

XML Processing

52

 All modern browsers have a built-in XML parser and their JavaScript
implementations support an in-memory XML DOM API, which loads the
entire document into memory where it is transformed into a hierarchical tree
data structure.

 You can then use the already familiar DOM functions

 Such as: getElementById(), getElements ByTagName(), and createElement() to
access and manipulate the data.

XML Processing in JavaScript

53

Loading and processing
an XML document via

JavaScript

54

 PHP provides several extensions or APIs for working with XML

 The DOM extension - loads the entire document into memory where it is transformed
into a hierarchical tree data structure.

 The SimpleXML extension - loads the data into an object that allows the developer to
access the data via array properties and modify the data via methods.

 The XML parser is an event-based XML extension. This is sometimes referred to as a
SAX-style API

 The XMLReader is a read-only pull-type extension similar to that used with database
processing. The XMLWriter provides an analogous approach for creating XML files.

 The SimpleXML and the XMLReader extensions provide the easiest ways to read
and process XML content.

 reads the entire XML file into memory and transforms into a complex object

XML Processing in PHP

55

 Here, the simplexml_load_file() function is used to transform XML file into an object

 The various elements in the XML document can then be manipulated using regular
PHP object techniques.

-> is used in object scope to
access methods and
properties of an object.

56

 XML provides a basic syntax that can be used to share information between
different kinds of computers, different applications, and different
organizations.

 With XML, your data can be available to all kinds of "reading machines"
(Handheld computers, voice machines, news feeds, etc)

 XML provides a gateway for communication between applications, even
applications on wildly different systems. As long as applications can share
data (through HTTP, file sharing, or another mechanism)

 It supports Unicode, allowing almost any information in any written human
language to be communicated.

 It can represent common computer science data structures: records, lists and
trees.

 Its self-documenting format describes structure and field names as well as
specific values.

 It is based on international standards.

XML: Advantages

57

 It is difficult for the end-user to understand its capabilities.

 XML syntax is redundant or large relative to binary representations of similar
data, especially with tabular data.

 The redundancy may affect application efficiency through higher storage,
transmission and processing costs.

 XML syntax is verbose, especially for human readers, relative to other
alternative 'text-based' data transmission formats.

 The hierarchical model for representation is limited in comparison to an
object oriented graph.

 XML namespaces are problematic to use and namespace support can be
difficult to correctly implement in an XML parser.

XML: Disadvantages

58

References

 “Internet & World Wide Web: How to Program 5th editions”

 “Fundamentals of Web Development” Book by Randy Connolly and

Ricardo Hoar, 2015

 W3schools: https://www.w3schools.com/Xml/

https://www.w3schools.com/Xml/

