
Module 7-2

Developing Web

Applications with PHP

SWE 363: Web Engineering & Development

2

 Learn how to deal with Superglobal arrays

 Learn how to manage sessions and cookies

Objectives

3

 Superglobal Arrays

 COOKIEs

 SESSIONs

Outline

4

 “Internet & World Wide Web: How to Program 5th editions”

© Pearson Education

 “Fundamentals of Web Development” Book by Randy Connolly
and Ricardo Hoar, 2015

 Lots of resources are available at http://www.php.net

 Documentation: manual

 http://www.php.net/manual/en/

 http://us2.php.net/manual/en/index.php

 Tutorials

 http://php.net/manual/en/tutorial.php

 Documented PHP functions

 http://us2.php.net/quickref.php

 W3schools tutorial http://www.w3schools.com/php/default.asp

 Tutorial Public https://www.tutorialrepublic.com/

References

http://www.php.net/
http://www.php.net/manual/en/
http://us2.php.net/manual/en/index.php
http://php.net/manual/en/tutorial.php
http://us2.php.net/quickref.php
http://www.w3schools.com/php/default.asp
https://www.tutorialrepublic.com/

Superglobal Arrays

6

 PHP uses special predefined associative arrays called superglobal variables that allow
the programmer to easily access HTTP headers, query string parameters, and other
commonly needed information

 These arrays always available in all scopes, ready for the programmer to access or
modify them anywhere from any function, class or file (without having to do anything
special).

Superglobal Variables ?

https://www.w3schools.com/php/php_superglobals.asp

https://www.w3schools.com/php/php_superglobals.asp

7

 PHP $GLOBALS
 is used to access global variables from anywhere in the PHP script (also

from within functions or methods).

 PHP stores all global variables in an array called $GLOBALS[index].
 The index holds the name of the variable.

PHP $GLOBALS

<?php

function myFunc(){

$foo="Local Scope";

echo 'This $foo is in the ' . $GLOBALS["foo"] . "\n";

echo 'This $foo is in the ' . $foo . "\n";

}

$foo="Global Scope";

myFunc();

?>

This $foo is in the Global Scope

This $foo is in the Local Scope

Another example: https://www.w3schools.com/php/php_superglobals.asp

https://www.w3schools.com/php/php_superglobals.asp

8

 PHP $_SERVER array contains a variety of information such as headers, paths,

and script locations.

 The entries in this array are created by the web server.

 No every web server will provide all the keys listed by PHP ; servers may omit some,

or provide others not listed here.

 These include:

 $_SERVER['PHP_SELF'] ; the filename of the currently executing script

 $_SERVER['REQUEST_TIME‘]; The timestamp of the start of the request. Available

since PHP 5.1.0.

 $_SERVER['SERVER_ADDR']; Returns the IP address of the host server.

 …… more

PHP $_SERVER

http://php.net/manual/en/reserved.variables.server.php

http://php.net/manual/en/reserved.variables.server.php

9

PHP $_SERVER

“Fundamentals of Web Development” Book by Randy Connolly and Ricardo Hoar, 2015

10

 The $_GET and $_POST arrays are the most important superglobal variables in PHP since

they allow the programmer to access data sent by the client in a query string.

 The HTML form allows a client to send data to the server. That data is formatted such that

each value is associated with a name defined in the form.

 If the form was submitted using an HTTP GET request, then the resulting URL will contain

the data in the query string.

 PHP $_GET array is used to collect form data after submitting an HTML form with

method="get".

 If the form was sent using HTTP POST, then the values would not be visible in

the URL, but will be sent through HTTP POST request body.

 PHP $_POST array is widely used to collect form data after submitting an HTML form with

method="post".

$_Get and $_Post superglobal arrays

From the PHP programmer’s perspective, almost nothing changes from a GET data post except

that those values and keys are now stored in the $_POST array.

http://www.kfupm.edusa/ics/courses.php?id=SWE363&term=182

11

 In GET method the data is sent as URL parameters that are usually strings of
name and value pairs separated by ampersands (&).

Using GET method

“Fundamentals of Web Development” Book by Randy Connolly and Ricardo Hoar, 2015

12

GET: example

action1.php

output

Source code

URL

13

 POST Method is more secure than GET because user-entered information is never

visible in the URL query string or in the server logs.

Using POST method

“Fundamentals of Web Development” Book by Randy Connolly and Ricardo Hoar, 2015

14

POST: example

15

 GET?

 GET may be used for sending non-sensitive data.

 Information sent from a form with the GET method is visible to everyone (all variable names and

values are displayed in the URL).

 GET also has limits on the amount of information to send. The limitation is about 2000 characters.

 It is possible to bookmark the page, because the variables are displayed in the URL. (This can be

useful in some cases)

 Note: GET should NEVER be used for sending passwords or other sensitive information!

 POST?

 Information sent from a form with the POST method is invisible to others (all names/values are

embedded within the body of the HTTP request)

 There is a much larger limit on the amount of data that can be passed and one can send text data

as well as binary data (uploading a file) using POST.

 It is not possible to bookmark the page, because the variables are not displayed in the URL

When to use….?

16

 You can determine if you are responding to a POST or GET by checking the

$_SERVER['REQUEST_METHOD'] variable

 Even though you may know that, for instance, a POST request was performed, you may

want to check if any of the fields are set.

 To do this you can use the isset() function in PHP to see if there is anything set for a particular

query string parameter

 These two checks may be true at the same time, or they may not be  you really should

check specifically for what information you want to know.

($_SERVER['REQUEST_METHOD']

if($_SERVER['REQUEST_METHOD'] == 'POST')

if isset ($_POST[‘myParamName’])

17

 isset — can be used to determine if a variable is set and is not NULL

isset()

<form action="action2.php" method="post">

<p>User Name: <input type="text" name="username" /></p>

<p>Password: <input type="password" name="password" /></p>

<p><input type=“submit“ name=“submit” value=“login” /></p>

</form>

<?php

if(isset($_POST['submit'])){

// code

}

?>

Make sure your submit buttons (i.e. <input
type="submit"> etc) have a "submit" value
assigned to 'name' attribute.

<input type="submit" name="submit">  isset($_POST["submit"]) returns true.

<input type="submit" >  isset($_POST["submit"]) returns false

18

<?php
// define variables and set to empty values
$nameErr = $emailErr = $genderErr = $websiteErr = "";
$name = $email = $gender = $comment = $website = "";

if ($_SERVER["REQUEST_METHOD"] == "POST") {
if (empty($_POST["name"])) {

$nameErr = "Name is required";
} else { $name = test_input($_POST["name"]); }

if (empty($_POST["email"])) {
$emailErr = "Email is required";

} else { $email = test_input($_POST["email"]); }

if (empty($_POST["website"])) {
$website = "";

} else { $website = test_input($_POST["website"]); }

if (empty($_POST["comment"])) {
$comment = "";

} else { $comment = test_input($_POST["comment"]); }

if (empty($_POST["gender"])) {
$genderErr = "Gender is required";

} else { $gender = test_input($_POST["gender"]);
}

}
function test_input($data) {

$data = trim($data);
return $data;

}
?>

From
Validation

19

if (empty($_POST["name"])) {
$nameErr = "Name is required";

} else {
$name = test_input($_POST["name"]);
// check if name only contains letters and whitespace
if (!preg_match("/^[a-zA-Z]*$/",$name)) {
$nameErr = "Only letters and white space allowed";

}
}

From
Validation

if (empty($_POST["email"])) {
$emailErr = "Email is required";

} else {
$email = test_input($_POST["email"]);
// check if e-mail address is well-formed
if (!filter_var($email, FILTER_VALIDATE_EMAIL)) {
$emailErr = "Invalid email format";

}
}

The preg_match() function searches a string for pattern, returning true if the pattern
exists, and false otherwise.

The easiest and safest way to check whether an email address is well-formed is to use
PHP's filter_var() function.

https://www.w3schools.com/php/php_form_url_email.asp

The ID of the filter to apply.

The Types of filters manual page

lists the available filters.

http://php.net/manual/en/function.preg-match.php
http://php.net/manual/en/function.filter-var.php
https://www.w3schools.com/php/php_form_url_email.asp
http://php.net/manual/en/filter.filters.php

20

 In a form on a PHP page, you can use:
 <form method="post" action=“file.php”>

 <form method="post" action="<?php echo $_SERVER['PHP_SELF'];?>">

 <form method="post" action=“”>

Posting input data to the same page..

Cookies & Sessions

22

 Information about individual visits to a Web site is called state information

 Maintaining state means to store persistent information about Web site visits

 HTTP was originally designed to be stateless – Web browsers store no
persistent data about a visit to a Web site

 The web server sees only requests.

 The HTTP protocol does not (without programming involvement) distinguish two
requests by one source from two requests from two different sources

Understanding State Information

“Fundamentals of Web Development” Book by Randy Connolly and Ricardo Hoar, 2015

23

 Each request for a new web page is processed without any knowledge of
previous pages requested or processed.

 Consider the scenario of a web shopping cart:

Understanding State Information..

>> The user (and the website owner) most
certainly wants the server to recognize that

 (1) the request to add an item to the cart

 (2) the subsequent request to check out
and pay for the item in the cart

are connected to the same individual !!

“Fundamentals of Web Development” Book by Randy Connolly and Ricardo Hoar, 2015

24

 Most modern applications maintain state, which means that they remember

what you were doing last time you ran the application, and they remember

all your configuration settings ..

 For example:

 Customize individual Web pages based on user preferences

 Temporarily store information for a user as a browser navigates within a

multipart form

 Provide shopping carts that store order information

 Use counters to keep track of how many times a user has visited a site

 Store user IDs and passwords

 A user ‘logs in’ to a web page. Once logged in, the user can browse the site while

maintaining their logged in state.

Understanding State Information..

How this can be done in PHP?

25

 Cookies are a mechanism for storing data in the remote browser and thus

tracking or identifying return users.

 One typical use of cookies in a website is to “remember” the visitor, so that

the server can customize the site for the user.

 A cookie is a small text file that the server embeds on the user's computer

and managed by the browser

 It is often used to identify a user.

 It is typically used to keeping track of information such as username, preferences

that the site can retrieve to personalize the page when user visit the website next

time.

 Each time the browser requests a page to the server, all the data in the cookie is

automatically sent to the server within the request.

PHP Cookies..

26

 Cookies accompany both server requests and responses within the HTTP header.

 They are not associated with a specific page but with the page’s domain,

 Thus, the browser and server will exchange cookie information no matter what page

the user requests from the site.

 The browser manages the cookies for the different domains so that one domain’s

cookies are not transported to a different domain.

 Cookies can be:
 Temporary cookies remain available only for the current browser session

 Persistent cookies remain available beyond the current browser session and are stored
in a text file on a client computer

 Each individual server or domain can store between 20 and 70 cookies on a user’s
computer
 Total cookies per browser cannot exceed 300

 The largest cookie size is 4 kilobytes

PHP Cookies

27

How Do Cookies Work?

“Fundamentals of Web Development”

Book by Randy Connolly and Ricardo

Hoar, 2015

28

 The setcookie() function is used to set a cookie in PHP.

PHP Cookies

setcookie(name, value, expire, path, domain, secure);

Parameter Description

name The name of the cookie. (required)

value The value of the cookie. Do not store sensitive information since this value is stored
on the user's computer.

expires The expiry date in UNIX timestamp format. After this time cookie will become
inaccessible. (default value is 0)*

path Specify the path on the server for which the cookie will be available. If set to /, the
cookie will be available within the entire domain. (optional)

domain (optional). Specify the domain for which the cookie is available to e.g
www.example.com.

secure This field, if present, indicates that the cookie should be sent only if a secure HTTPS
connection exists.

* If the expiration time of the cookie is set to 0, or omitted, the cookie will expire at the end of the session
i.e. when the browser closes.

29

Create a Cookie: example

<?php

// Setting a cookie

setcookie("username", “Ahmed", time()+30*24*60*60);

?>

 Here's an example that uses setcookie() function to create a cookie

named username and assign the value Ahmed to it. It also specify that the cookie will

expire after 30 days (30 days * 24 hours * 60 min * 60 sec).

 To skip any argument (except the expire argument), you can replace an argument with

an empty string ("")

 To skip the expire argument use a zero (0) instead, since it is an integer

 Make sure you call the setcookie() function before any output generated by your

script, otherwise cookie will not set.

 Cookies have to be sent before the heading elements >> Example 

30

Gets an error!:

Warning: Cannot modify header information

- headers already sent by (output started

at ….._headers.php:9) in …………_headers.php

on line 11

This is the correct

approach!

31

How to Retrieve a Cookie: example

<?php

$cookie_name = "username";

$cookie_value = “Ahmed";

setcookie($cookie_name, $cookie_value,

time()+(86400 * 30), "/"); //86400 = 1 day

?>

<html>

<body>

<?php

if(!isset($_COOKIE[$cookie_name])) {

echo "Cookie named '" . $cookie_name . "' is not set!";

} else {

echo "Cookie '" . $cookie_name . "' is set!
";

echo "Value is: " . $_COOKIE[$cookie_name];

}

?>

</body>

</html>

The "/" means that the cookie is available in entire
website (otherwise, select the directory you prefer).

32

 It will expire !

 You can delete a cookie by calling the same setcookie() function with the
cookie name and any value (such as an empty string) however this time you
need the set the expiration date in the past, as shown in the example below:

 You should pass exactly the same path, domain, and other arguments that
you have used when you first created the cookie in order to ensure that the
correct cookie is deleted.

How to Delete a Cookie?

<?php

// Deleting a cookie

setcookie("username", "", time()-3600);

?>

33

 Depends on the browser...

 How do I view and control cookies in my web browser?

 https://kb.iu.edu/d/ajfi

Where is the cookie stored?

https://kb.iu.edu/d/ajfi

34

 Cookies can be blocked as said earlier but some websites become not as effective
when we don’t accept them.

 To get the full functionality of websites, we accept the cookies with concerns
about privacy and tracking

 Security issues:

 Since cookies are stored on user's computer it is possible for an attacker to easily
modify a cookie content to insert potentially harmful data in your application that
might break your application.

 Performance issue:

 every time the browser requests a URL to the server, all the cookie data for a website
is automatically sent to the server within the request.

 If you have stored 5 cookies on user's system, each having 4KB in size, the browser
needs to upload 20KB of data each time the user views a page, which can affect your
site's performance.

Cookies issues

35

 Sessions are like cookies in which they provide a way for a server to track

user’s data over a series of pages

PHP Sessions

Sessions Cookies

Stores data on the server rather than
user's computer.

Stored on the users computer.

More secure (data is not transmitted
between server and client)

Easier to create and retrieve

Store more information than a cookies
Require slightly less work from the
server

Sessions can work even if user does not
accept cookies

Persist over a longer period of time

36

 Session is a server-based state mechanism that lets web applications store
and retrieve objects of any type for each unique user session.

PHP Sessions ..

 That is, each browser session
has its own session state
stored as a serialized file on
the server, which is
deserialized and loaded into
memory as needed for each
request.

In a session based environment, every user
is identified through a unique number called
session identifier or SID.

“Fundamentals of Web Development” Book by Randy Connolly and Ricardo Hoar, 2015

37

 The session state works within

the same HTTP context as any

web request.

 The server needs to be able to

identify a given HTTP request

with a specific user request.

 Since HTTP is stateless, some

type of user/session

identification system is needed.

 Sessions in PHP are identified

with a unique session ID.

 In PHP, this is a unique 32-byte

string that is by default

transmitted back and forth

between the user and the server

via a session cookie.

How Does session state Work?

session ID looks like:

sess_f1234781237468123768asjkhf

a7891234g

“Fundamentals of Web Development” Book by Randy Connolly and Ricardo Hoar, 2015

38

 In PHP, session state is available to the developer as a superglobal associative
array, much like the $_GET, $_POST, and $_COOKIE arrays.

 It can be accessed via the $_SESSION variable,

 but unlike the other superglobals, you have to take additional steps in your own
code in order to use the $_SESSION superglobal.

 A session is started with the session_start() function (at the beginning of the

script)

 This tells PHP that a session is requested.

 A session ID is then allocated at the server end.

Starting a PHP Session

The session IDs are randomly generated by the PHP engine which is almost

impossible to guess. Furthermore, because the session data is stored on the

server, it doesn't have to be sent with every browser request.

<?php

// Starting session

session_start();

?>

39

 The session_start() function first checks to see if a session already exists by

looking for the presence of a session ID.

 If it finds one, i.e. if the session is already started, it sets up the session variables

and if doesn't, it starts a new session by creating a new session ID.

 Session variables store user information to be used across multiple pages

(e.g. username, favorite color, etc).

 By default, session variables last until the user closes the browser.

Starting a PHP Session..

>> You must call the session_start() function at the beginning of the page

i.e. before any output generated by your script in the browser, much like you

do while setting the cookies with setcookie() function.

40

 All session data are stored as key-value pairs in the $_SESSION[] superglobal array.

 The stored data can be accessed during lifetime of a session.

 Consider the following script, which creates a new session and registers two session
variables.

 To access the session data, simply recreate the session by calling session_start()
and then pass the corresponding key to the $_SESSION associative array.

Storing and Accessing Session Data

<?php

// Starting session

session_start();

// Storing session data

$_SESSION["firstname"] = “Ahmed”;

$_SESSION["lastname"] = “Sami”;

?>

<?php

// Starting session

session_start();

// Accessing session data

echo 'Hi, ' . $_SESSION["firstname"] . ' ' .

$_SESSION["lastname"];

?> Hi, Ahmed Sami

41

 If you want to remove certain session data, simply unset the corresponding key of the

$_SESSION associative array, as shown in the following example:

 However, to destroy a session completely, simply call the session_destroy() function. This

function does not need any argument and a single call destroys all the session data.

Destroying a Session

<?php

// Starting session

session_start();

// Removing session data

if(isset($_SESSION["lastname"])){

unset($_SESSION["lastname"]);

}

?>

<?php

// Starting session

session_start();

// Destroying session

session_destroy();

?>

42

<?php

// Start the session

session_start();

?>

<!DOCTYPE html>

<html> <body>

<?php

// Set session variables

$_SESSION["favcolor"] = "green";

echo "Session variables are

set.";

?>

</body> </html>

Now, let's create a new page called
"demo_session1.php". In this page, we
start a new PHP session and set some
session variables:

Next, we create another page called
"demo_session2.php". From this page, we
will access the session information we set
on the first page ("demo_session1.php").

<?php

session_start();

?>

<!DOCTYPE html>

<html> <body>

<?php

// Echo session variables that

were set on previous page

echo "Favorite color is

" . $_SESSION["favcolor"];

?>

</body> </html>

Notice that session variables are not passed individually to each new page, instead they
are retrieved from the session we open at the beginning of each page (session_start()).

43

To change a session variable, just
overwrite it:

<?php

session_start();

?>

<!DOCTYPE html>

<html>

<body>

<?php

// to change a session variable,

just overwrite it

$_SESSION["favcolor"] = "yellow";

print_r($_SESSION);

?>

</body>

</html>

To remove all global session
variables and destroy the session

<?php

session_start();

?>

<!DOCTYPE html>

<html>

<body>

<?php

// remove all session variables

session_unset();

// destroy the session

session_destroy();

?>

</body>

</html>

https://www.w3schools.com/php/php_sessions.asp

https://www.w3schools.com/php/php_sessions.asp

44

Login
example

lo
g

in
.p

h
p

in
d

e
x
.p

h
p

45

Login
example

P
ro

fi
le

.p
h

p

