
Module 6-2

Web Modeling &

Architecture

SWE 363: Web Engineering & Development

2

 Learn to model web applications

 Learn how to build the web architecture

Objectives

3

References

 Papers
– Schwinger, Wieland, and Nora Koch. "Modeling web

applications." Web Engineering (2006): 39-64.

– "The expressive power of uml-based web engineering.“ Koch,
Nora, and Andreas Kraus. Second International Workshop on
Web-oriented Software Technology (IWWOST02). Vol. 16.
CYTED, 2002.

 Books
– “Web Engineering: The Discipline of Systematic Development

of Web Applications” by Kappel, G., Proll, B. Reich, S. &
Retschitzegger, W. (2006), Wiley & Sons.

– “Web Engineering: A Practitioner's Approach” by Roger S.
Pressman and David Lowe, 2008, McGraw-Hill Education

– ”Software engineering: a practitioner's approach”. Pressman,
Roger S. (2005), Palgrave Macmillan.

4

 Web Modeling

 Requirements Modeling

 Content Modeling

 Hypertext modeling (navigation)

 Presentation modeling

 Customization modeling

 Web Architecture

Outline

5

 Purpose: to define an abstract view of a real-world entity

 Finding & discovering objects/concepts in a domain

 Assigning responsibilities to objects

 Modeling addresses one of the major problems of today's development:

little planning of Web Applications prior to implementation

 Our focus is modeling of

 static & dynamic aspects of content,

 hypertext, and

 presentation

Why Modeling?

6

 Levels – the “how” & “what” of an application

 Aspects – objects, attributes, and relationships; function & processes

 Phases – Development cycle

Software Application Modeling

User interface

Application Logic

Analysis Design Implementation
Structure

Behavior

Phases

Levels

Aspects

7

 Roots of Modelling:
 Data Engineering - focusing on structural aspects

 Software Engineering - focusing on behavioral aspects

 Used Modelling Formalisms:
 Entity Relationship Technique (ER)

 UML 2.0

Software Application Modeling

User interface

Application Logic

Analysis Design Implementation
Structure

Behavior

Phases

Levels

Aspects

“Unified Modeling Language is a visual

language for specifying and documenting

the artifacts of systems.”

8

Software Application Modeling

User interface

Application Logic

Analysis Design Implementation
Structure

Behavior

Phases

Levels

Aspects

But does not regard one of the major characteristics of Web

applications, namely hypertext

9

Requirements Framework for
Modeling Web Applications

Content

Presentation

Levels

Hypertext

the user interface or page layout

the structuring of the content into

nodes and links between these nodes

The information and application logics

underneath the Web App

 Separation of levels

 explicit inter-dependencies between levels

 allows reuse and helps to reduce complexity

 Bottom-Up and Top-Down Design

 bottom-up: starting with the content level (e.g. given database) and derive the

hypertext and presentation levels

 top-down: content level is derived from the other levels

10

 Levels – Information, node/link structure, UI & page layout separate.

 Aspects – Same as Software Applications

 Phases – Approach depends upon type of application

 Customization – Context information

Web Application Modeling

Content

Presentation

Analysis Design Implementation
Structure

Behavior

Phases

Levels

Aspects

Hypertext
Customization

The inclusion of context information in the development of Web applications plays a

significant role to allow for e.g. personalization and location-based services

11

 Customization

 considers the context, e.g., users’ preferences, device characteristics, or bandwidth restrictions

 allows to adapt the Web application accordingly.

 It influences all three Web modeling dimensions of content, hypertext, and presentation with
respect to structure and behavior and should be taken into account in all phases of the
development process.

Web Application Modeling

Content

Presentation

Analysis Design Implementation
Structure

Behavior

Phases

Levels

Aspects

Hypertext
Customization

12

Web Application Modeling

Content

Presentation

Structure

Behavior

Levels

Aspects

Hypertext

• structure: user interface elements and their

composition

• behavior: reactions to input events,

interaction and synchronization between user

interface elements

• structure: page compositions and navigational

relationships

• behavior: run-time behavior of hypertext

• structure: domain-dependent data

• behavior: domain-dependent application logic

• The relevance of the structure and behavior models depends on the type of

Web application to be implemented.

13

 RMM: Relationship Management Model

 WebML: Web Modeling Language

 HDM: Hypertext Design Model

 WSDM: Web Site Design Method

 OOHDM: Object-oriented Hypermedia Design Method

 OOH: Object-oriented Hypermedia

 WAE: Web Application Extension

 UWE: UML-based Web Engineering

Web Modeling Approaches

14

 UML Web Engineering (UWE) is a software engineering approach for the Web
domain aiming to cover the whole life-cycle of Web application development.

 http://uwe.pst.ifi.lmu.de/

 Light-weight extension of UML

 For Web-centric modeling, we will employ the UWE notations

 Relies on Object Management Group (OMG) standards – (i.e., UML-compliant)

 Comprehensive modeling tool

 Supports semi-automatic generation of code

Readings:

 N. Koch, A. Kraus: The Expressive Power of UML-based Web Engineering

UWE: UML-based Web Engineering

http://uwe.pst.ifi.lmu.de/
http://users.dsic.upv.es/~west/iwwost02/papers/koch.pdf

15

 Requirements Modeling

 Content Modeling

 Hypertext modeling (navigation)

 Presentation modeling

 Customization modeling

Modeling Support in UWE

Source:

Schwinger, Wieland, and Nora Koch. "Modeling web applications." Web

Engineering (2006): 39-64.

16

 Serves as a bridge between Requirements & Design phases
 Emphasize the users goals and perspective

 Two types of requirements:
 Functional (to be found in all software systems). >> UML activity diagrams
 Navigational (typical for web applications)

 Use cases preferred modeling technique for functional requirements
 provides graphical overview of a system’s use cases, its external actors, and their relationships

 Can be used for functional & hypertext requirements

 Use “<<navigation>>” stereotype to distinguish hypertext from functional

 Written details for various use cases
 Name of use case, primary actor, scope, pre-conditions, post-conditions, related use cases, etc

 Suggested to keep separating the functional from the navigational use cases

 Use cases should be described in detail.
 in textual form or

 by use of a behavior diagram, e.g. an activity diagram.

Requirements Modeling

17

 Association relationships (Between Actor and UCs)

 Generalization relationships

 One element (child) "is based on" another element (parent)

 Include relationships

 One use case (base) includes the functionality of another use case (inclusion
case)

 One UC must call another; e.g., Login UC includes User Authentication UC

 Supports re-use of functionality

 Extend relationships

 One use case (extension) extends the behavior of another (base)

 One UC calls another UC under certain condition; think of if-then decision points

Linking Use Cases

18

 Actors

 authors, submitting papers for the conference

 program committee members, reviewing papers

 program committee chair

Note: All Web applications have at least one human user, most often anonymous

 Functional requirements

 submit paper

 assign paper to reviewer

 produce review

 produce list of accepted / rejected papers

Example:
Conference paper submission System

19

 Conference paper submission system

Use Case Diagram (UCD) Example

Source: Web Engineering – Kappel et al.

20

 Activity diagrams are graphical representations of workflows of stepwise
activities and actions with support for choice, iteration and concurrency.

Activity Diagram (AD) Example

Source: Web Engineering – Kappel et al.

21

 Requirements Modeling

 Content Modeling

 Hypertext modeling (navigation)

 Presentation modeling

 Customization

Modeling Support in UWE

22

 Content modeling is aimed at transferring the information and functional
requirements determined by requirements engineering to a model.

 Content modeling produces models capturing the structural (i.e., information
objects) & behavioral aspects of the content of a web application

 Content modeling builds on the concepts of data modeling or object oriented
modeling.

 Primary Models

 Class or Entity Relationship (ER) diagrams – captures static aspects.

 State machine diagrams, UML state charts – captures dynamic aspects.

 NOT concerned with navigation or presentation, only content level.

 The class diagram will later serve as the basis to model the hypertext and the
presentation for the example application.

Content Modeling

23

Content Structure Model-
Class Diagram

Source: Web Engineering – Kappel et al.

24

 For dynamic Web applications, a SMD shows the life-cycle of an object.

 depict important states and events of objects, and how objects behave in response
to an event (transitions)

 Used only for state-dependent objects

Content Behavior Model-
State Machine Diagram

State machine diagram for the states of a paper

Source: Web Engineering – Kappel et al.

25

Consistency with UML domain model

Slightly modified version

26

 Requirements Modeling

 Content Modeling

 Hypertext modeling (navigation)

 Presentation modeling

 Customization

Modeling Support in UWE

27

 To specify the navigability through the content of a Web application,
 For simplicity: to model the navigation paths available to users.

 The hypertext structure has to be designed carefully.
 to avoid the risk of users getting lost and

 putting them under excessive cognitive stress

 Hypertext modeling generates two artifacts:
 Hypertext structure model which defines the structure of the hypertext (i.e.

navigation among classes)
 Also called navigation structure model or navigational view

 Access model- it refines the hypertext structure model by access elements

 >> Focuses on the structure of the hypertext & access elements.

 Use “<<navigation class>>” stereotype to distinguish from content classes.

Hypertext (Navigation) Modeling

28

 Hypertext structure modeling is based on the concepts of hypertext, i.e., on
nodes (also called pages or documents) and links between these nodes.

 Here, the starting point is usually the content model which contains the
classes and objects to be made available as nodes in the hypertext.

 Often the hypertext structure model is specified as a view on the content model
and is therefore sometimes also called the navigational view.

 a node is specified as a view on the content model selecting one or more objects
from the content.

 Hypertext modeling concepts in UWE

 «navigation class» for navigation nodes

 «navigation link» for navigation links

Hypertext Structure Model

29

 Hypertext structure model of the PC’s view on the reviewing system.

Hypertext Structure Model

Source: Web Engineering – Kappel et al.

UWE modeling

method

30

 In the reviewing system example,
 If one wants to navigate from a reviewer to a paper assigned to this reviewer, one will

have to identify this specific paper during navigation.

 this could be realized in the form of a list showing all papers. Such a selection list for
navigational support is also known as an ‘‘index’’.

 Hypertext structure models describe navigation, but NOT orientation.

 Access models describe both, through navigation patterns,
 <<index>> - select a single object out of a homogeneous list

 <<menu>> - allow access to heterogeneous nodes or other menus (submenus)

 <<query>> - search for a node and direct access

 <<guided-tour>> - allow users to sequentially walk through a number of nodes

 The use of these navigation patterns helps to increase the quality of the hypertext
model extremely.

Access Model

31 Source: Web Engineering – Kappel et al.

PC chair’s view

32

 A simplified access model of the PC chair’s view specified in the hypertext

structure model in the reviewing system.

 Note that a link’s default multiplicity is 1.

 The PC chair has access to all papers, reviews, and users.

 To access a specific paper, a unique number is used.

 Alternatively, the PC chair can search for a paper by title.

 UWE uses UML stereotypes,

 i.e., <<menu>> (e.g., ‘‘Conference’’),

 <<index>> (e.g., ‘‘ReviewingStatus’’),

 <<query>> (e.g., ‘‘SearchPaperByTitle’’), and <<guided tour>>.

Access Model

33

 Method to derive access model from hypertext structure model

 introduce index for all navigation links with multiplicity >1

 introduce menu for each class with more than one outgoing navigation link

 use role names of outgoing navigation links as menu items

How to derive access Model from hypertext
structure model

34

Consistency of hypertext structure
model and access model

35

 Requirements Modeling

 Content Modeling

 Hypertext modeling (navigation)

 Presentation modeling

 Customization

Modeling Support in UWE

36

 To model the structure and behavior of the user interface
 Aims at simple, self-explanatory, consistent interface when interacting with

WerbApp

 Characteristics of presentation modeling: Hierarchical composition of pages
consisting of presentation elements

 Models the structure and behavior of user interface
 Composition & design of each page, e.g., text, fields, forms, images, etc.
 Identify recurring elements (e.g. headers/footers)
 Describe behavior oriented aspects (events associated to elements)
 Design the graphical layout for interface (a graphic designer)

 Resulted artifacts:
 Static presentation model
 Dynamic interaction model

Presentation Modeling

37

 Composition of presentation pages is described on three hierarchical levels
(using a nested UML class diagram)

 A Presentation Page - describes a page presented to the user as a visualization
unit (“root” element; serve as a container)

 Indicated by <<page>>

 A Presentation Unit (fragment of the page logically defined by grouping related
elements)

 Indicated by <<presentation unit>>

 Represents a hypertext model node

 A Presentation Element (basic building block and can include text, images,
buttons, fields, etc)

 such as <<text>>, <<anchor>>, <<image>>, <<button>>, etc

Levels of Presentation Models

38

Presentation Modeling: Static

Source: Web Engineering – Kappel et al.

It shows two presentation pages of the reviewing system

39

 Behavioral aspects of the user interface

 such as a reviewer’s interaction to navigate to the papers assigned to him for
reviewing, can be modeled by means of behavior diagrams.

 Sequence diagrams

 Depict sequential interactions (i.e., the flow of logic) between objects in an
application over time.

 What messages, what order, and to whom.

 Ex.: Object A calls method of Object B

 Ex.: Object B passes method call from Object A to Object C.

Presentation Modeling: Behavior

40

Sequence Diagram – Example 1

Source: Web Engineering – Kappel et al.

41

Sequence Diagram – Example 2

Source: Web Engineering – Kappel et al.

42

 Requirements Modeling

 Content Modeling

 Hypertext modeling (navigation)

 Presentation modeling

 Customization modeling

Modeling Support in UWE

43

 Objective: Explicit representation of context information, and related
implications on presentation

 Origin: the fields of personalization and mobile computing

 Motivation: Ubiquitous WebApps increasingly gain importance,

 the consideration of context information and an appropriate adaptation of the
application as early as possible in the modeling phase are required.

 Different approaches

 Static modeling: different models for different context

 Dynamic modeling: one model + adaptation rules

 Result

 Customization model

Customization Modeling

44

 Customization requires examining the Web application’s usage situation,

 i.e., dealing with the questions of ‘‘what’’ should be adapted and ‘‘when’’.

 To personalize a Web application

 You need to model and manage the preferences and characteristics of a user in a so-called user
profile.

 For example, to adapt a Web application in the field of mobile computing, we have to
consider device profiles, location information, and transmission bandwidth.

 This information is then represented within the context model in form of a class diagram.

 Customization is different form maintenance or re-engineering.

 Customization modeling considers context information that can be predicted at modeling time
which can assume different values when the Web application is run.

 In contrast, adaptation due to changes in the organizational or technological environment is part
of maintenance or re-engineering activities.

Customization Modeling

45

Dynamic adaptation of an index in
the hypertext model

46

Dynamic adaptation of a page
in the presentation model

47

 Should optimize the user’s work

 Should be designed to minimize the learning time (especially when the
application is revisited)

 Should provide an indication of the current location in the content hierarchy

 Should always help the user understand his current options: available
functions, relevant content, active links, etc.

 Should facilitate navigation, e.g. provide a site map

 Should be consistent in using navigation controls, menus, icons, and
aesthetics (e.g., color, shape, layout)

Interface Design Guidelines I

48

 All information presented through the interface should be readable by young
and old

 Should communicate the status of any activity initiated by the user

 Whenever appropriate, the state of the user interaction should be tracked
and stored so that a user can logoff and return later to pick up where she left
off.

 Should use multi-tasking in a way that lets the user proceed with work as if
the operation has been completed.

Interface Design Guidelines II

Web App Architecture

50

 Architecture describes the structure: components, their interfaces and
relationships

 Benefits:
 Architecture has considerable influence on the quality of the web application

 It makes the system more understandable to better manage its complexity

 Inappropriate architecture can lead to
 Poor performance

 Low availability

 Insufficient maintainability and expandability

 Successful architecture should consider
 the use of multi-tier architectures

 integration with existing systems: web servers, application servers, data repositories,
etc.

Developing Architectures

51

 Different factors and constraints that has influences on the development of
an architecture

Developing Architectures

Architecture

Functional Requirements
o Clients

o Users

o Other Stakeholders

Experience with
o Existing Architecture

o Patterns

o Project Management

o Other

52

 Different factors and constraints that has influences on the development of
an architecture

Developing Architectures

Architecture

Quality considerations with
o Performance

o Scalability

o Reusability

o Other

Technical Aspects
o Operating System

o Middleware

o Legacy Systems

o Other

53

 N-tier architectures, is also called multi-tier architecture, have the same
components

 Presentation

 Business Logic

 Data management

 N-tier architectures try to separate the components into different tiers/layers

 Tier: physical separation

 Layer: logical separation

Significance of “Tiers”

54

 All 3 layers are on the same machine

 All code and processing kept on a single machine

 Presentation, Logic, Data layers are tightly connected

 Scalability: Single processor means hard to increase volume of processing

 Portability: Moving to a new machine may mean rewriting everything

 Maintenance: Changing one layer requires changing other layers

1-tier Architecture

55

 Database runs on Server

 Separated from client

 Easy to switch to a different database

 Presentation and logic layers still tightly connected

 Heavy load on server

 Potential congestion on network

 Presentation still tied to business logic

2-tier Architecture
Client/Server

56

 Each layer can potentially
run on a different machine

 Presentation, logic, data
layers disconnected

3-tier Architecture

57

 Presentation Layer

 Provides user interface

 Handles the interaction with the user

 Sometimes called the GUI or client view or front-end

 Should not contain business logic or data access code

 Logic Layer

 The set of rules for processing information

 Can accommodate many users

 Sometimes called middleware/ back-end

 Should not contain presentation or data access code

 Data Layer

 The physical storage layer for data persistence

 Manages access to DB or file system

 Sometimes called back-end

 Should not contain presentation or business logic code

A Typical 3-tier Architecture

58

Architecture Principles:

 Client-server architecture

 Each tier (Presentation, Logic, Data) should be
independent and should not expose dependencies related
to the implementation

 Unconnected tiers should not communicate

Advantages of 3-tier Architecture

 Independence of Layers

 Easier to maintain

 Components are reusable

 Faster development (division of work)

 Web designer does presentation

 Software engineer does logic

 DB admin does data model

 Change in platform affects only the layer running on that
particular platform

A Typical 3-tier Architecture

