
Module 6-1

Introduction to Web

Engineering

SWE 363: Web Engineering & Development

2

 Understand the role of web engineering

 Learn a systematic process for web applications development

Objectives

3

Used References

 Books

– “Web Engineering: The Discipline of Systematic
Development of Web Applications” by Kappel, G., Proll, B.
Reich, S. & Retschitzegger, W. (2006), Wiley & Sons.

– “Web Engineering: A Practitioner's Approach” by Roger S.
Pressman and David Lowe, 2008, McGraw-Hill Education

 Others:

– "The expressive power of UML-based web engineering.“
Koch, Nora, and Andreas Kraus. Second International
Workshop on Web-oriented Software Technology
(IWWOST02). Vol. 16. CYTED, 2002.

4

 What is Web Engineering?

 Web applications

 Characteristics

 Categories

 Web Engineering Process

 Requirement Analysis

Outline

5

 “The application of systematic and quantifiable approaches to cost-effective
analysis, design, implementation, testing, operation, and maintenance of
high-quality web applications” – Kappel et al.

 Web engineering extends Software Engineering to Web applications, but with
Web-centric approaches.

 >>The gap between native apps and web apps is narrowing.

 Most projects are now Web-based and More “mission-critical” applications
moving to the Web

 Application development on the Web shouldn’t be ad-hoc approach

 Unplanned, one-time events, Individual experience and little or no documentation for
code/design

What is Web Engineering?

6

 The Web originally was designed as a purely informational medium, it is now increasingly
evolving into an application medium

 Web applications today are full-fledged, complex software systems

 Interactive, data intensive, and customizable services accessible through different devices

 WebApp - is an application that was designed from the beginning to be executed in a Web-
based environment. Two very important aspects of such an application:

 >> the hypermedia aspect in terms of hypertext and multimedia in combination with traditional
application logic must be taken into account throughout the application lifecycle, which makes it
different with respect to a conventional application.

 >> It is not just a set of Web pages. In particular, it enforces the notion of a session, which
differentiates it from the ordinary request-response Web paradigm

 Web App is a client–server software application in which the client (or user interface) runs
in a web browser.

 Common web applications include webmail, online retail sales, online auctions, e-commerce
websites, etc.

Web applications
(WebApp)

7

 Some of the advantages of web applications include:

 Accessible from any Internet-enabled computer.

 Usable with different operating systems and browser applications.

 Easier to roll out program updates since only software on the server needs to be
updated and not on every desktop in the organization.

 Centralized storage on the server means fewer security concerns about local storage
(which is important for sensitive information such as health care data).

 Some of these disadvantages include:

 Requirement to have an active Internet connection (the Internet is not always
available everywhere at all times).

 Security concerns about sensitive private data being transmitted over the Internet.

 Concerns over the storage, licensing, and use of uploaded data.

 Problems with certain websites on certain browsers not looking quite right.

 Restrictions on access to the operating system can prevent software and hardware
from being installed or accessed (like Adobe Flash on iOS)

WebApps vs. Desktop Apps

8

How do Web applications differ from traditional applications?

 Network intensiveness - Resides on a network and must serve the needs of a
diverse community of clients

 Availability - Users of popular WebApps often demand access on a
“24/7/365” basis.

 Performance - If a WebApp user must wait too long (for access, for server-
side processing, for client-side formatting and display), >> alternatives !

 Data driven - The primary function of many WebApps is to use hypermedia to
present text, graphics, audio, and video content to the end-user

 Continuous evolution - unlike conventional application software that evolves
over a series of planned chronologically-spaced releases, Web applications
evolve continuously.

Characteristics of WebApps

9

 Self-explanation -User can easily access, register, navigate, download, etc..

 Concurrency - Large number of users may access the WebApp at the same

time

 Diversity of users and Unpredictable load –

 Number of users may vary by orders of magnitude from day to day

 Patterns of usage among end-users will vary greatly

 Diversity of Development Team -marketing & computing, art & technology

etc.

 Integration:

 Internal – with existing legacy systems

 External – with Web services

Characteristics of WebApps..

10

WebApp Categories

11

 Example: static home pages, company website

 Originator of Web applications

 Web pages are stored on a Web server as ready-made, i.e. static, HTML documents and

sent to the Web client in response to a request.

 Manual updates- Especially for Web sites requiring frequent changes or for sites with huge

numbers of pages this is a significant cost factor and often results in outdated information

 Pros: Simple, stable, short response times.

 Cons:

 High management costs for frequent updates & large collections

 More prone to inconsistent/redundant info

 Outdated information

WebApp Categories
Document-centric web sites

12

 Examples: news sites, travel planning, booking systems, online banking etc.

 Not only read-only content but also allow content modification

 Come with the introduction of HTML forms

 Simple interactivity- the user can perform updates on the underlying content

 Dynamic page creation - Web pages and links to other pages generated
dynamically based on user input

 Content updates -> Transactions
 Decentralized

 Database connectivity

 Increased complexity

WebApp Categories
Interactive & transactional

13

 Examples: Business-to-Business (B2B) solutions in e-commerce, e-government applications,
a purchase order that moves through various departments for authorization, etc.

 The applications automate, to at least some degree, a process or processes.

 The processes are usually business-related but can be any process that requires a series of steps
to be automated via software.

 Expected Challenges:

 The complexity of the services,

 the autonomy of the participating companies and

 the necessity for the workflows to be robust and flexible.

 The role of Web services:

 Interoperability, Loosely-coupled and Standards-based

 High complexity; autonomous entities

WebApp Categories
Workflow-based applications

14

 Collaborative Web applications support shared information and workspaces in
order to generate, edit, and manage shared information
 Classic example: Wikis

 Social networking means socializing for personal, or professional purposes
 for example, LinkedIn and Facebook.

 Social collaboration means working socially to achieve a common goal
 for example, GitHub and Quora.

 Unstructured, cooperative environments
 Support shared information workspaces to create, edit and manage shared

information

 An increasing trend towards the Social Web
 Moving towards communities of interest

 Integration with other forms of web applications

WebApp Categories
Collaborative & Social Web

15

 Portal-oriented Web applications provide a single point of access to separate,
potentially heterogeneous sources of information and services.

 Example, ERP

 Designed to give partners focused access to different sources of information
and services in a uniform way

 Each information source gets its dedicated area

 Specialized portals

 Business portals (e.g., employee intranet)

 Marketplace portals (horizontal & vertical)

 Community portals (targeted groups)

WebApp Categories
Portal-Oriented

16

 Examples: Geolocation, weather forecast

 Ubiquitous computing is a concept in SWE and CS where computing is made to appear
anytime and everywhere.

 WepApps are becoming ubiquitous systems that are available anytime, anywhere, and with any
media.

 UWA have to take into account, individually for each user, time and location of access,
together with the different capabilities of devices comprising display resolution, local
storage size, method of input and computing speed as well as network capacity.

 A new class of applications that:
 make (a large amount of) multimedia information accessible to the users
 provide “operational” services
 provide a variety of interaction paradigms (e.g. navigation, query, search, operation invocation,

etc.)
 are multi-channel, in the sense that they are available on a variety of different devices
 be accessible anywhere at anytime.
 support different categories of users (each one with different characteristics and needs)

WebApp Categories
Ubiquitous WebApps

17

 Most of the web’s content today is designed for humans to read , and not for

computer programs to process meaningfully

 Typical uses of the Web today are information seeking, publishing, searching, etc.

 Dynamic pages generated based on information from databases but without

original information structure found in databases.

 e.g. With HTML and a tool to render it, one can create and present a page that lists

items for sale, but can't manipulate data.

 Limitations of the Web Search today:

 The Web search results are high recall, low precision.

 Results are highly sensitive to vocabulary.

 Most of the publishing contents are not structured to allow logical reasoning and

query answering.

Knowledge-based
Semantic Web

18

 The Semantic Web is a web that is able to describe things in a way that computers

can understand.

 It is much more expressive, comprehensive and powerful form of data modeling.

 Semantic Web is an extension of the Web through standards by W3C. The

standards promote common data formats and exchange protocols on the Web,

most fundamentally the Resource Description Framework (RDF).

 Goal: Information on the Web should be readable to machines, as well as

humans.

 The Semantic Web describes the relationships between things (like A is a part of B

and Y is a member of Z) and the properties of things (like size, weight, age, and

price)

Semantic Web

“The next generation of the Web”

Simple Semantic Web Example:

http://w3schools.sinsixx.com/semweb/semantic_example.asp.htm

http://w3schools.sinsixx.com/semweb/semantic_example.asp.htm

19

WebApp Development Process

20

 DISCOVERY – Meet, talk, define, explore

 Exchange of knowledge. Ask questions, and most of all, listen. Define expectations,
goals, and capabilities for your website and gather all the information we need to
define milestones, create a schedule, and supply an estimate.

 STRATEGY & PLANNING – Measure twice, cut once

 Focus on features and functionality of the site and offer search engine optimization
(SEO) recommendations. Create a sitemap and wireframes that will help us plan
every type of page on the site and its contents for an optimal user experience.

 DESIGN – Designs that engage

 Take all of our upfront planning and bring it to life with simple, intuitive design.
Apply brand characteristics, colors, fonts, and imagery to the approved wireframes
to enhance and streamline your site, while visually engaging your users.

WebApp Development Process

21

 DEVELOPMENT AND TESTING –

 Begin building and programming the website (open source content management
system (CMS) software is usually used), but not in our course. Perform browser
and functionality testing for a consistent experience across all major browsers
including Chrome, Firefox, Safari, Opera, and Internet Explorer. In addition, test
the website on multiple devices and screen sizes to make sure the mobile-
friendly design delivers the optimum experience across mobile devices, tablets,
and desktop computers. After browser and functionality testing is complete,
you’ll have the opportunity to review the site.

 LAUNCH – Welcome to your new site

 Begin the file transfer necessary to push the site live. At each point in this
process, we’ll do comprehensive final testing to make sure all links and
functionality respond as expected.

 MAINTENANCE & SUPPORT – A smooth transition to the future

Website Development Process

22

 IEEE 610.12 defines a requirement as

1. Condition needed to solve a user’s problem

2. Condition to be met or possessed by the system to satisfy a formal agreement

3. Documented representation of conditions as in 1 and 2

 Requirements Engineering (RE) – the principles, methods and tools for eliciting, describing,

validating and managing project goals and needs.

 Given the complexity of Web apps, RE is a critical initial stage, but often poorly executed.

 What are the consequences?

 Unclear objectives, unrealistic schedules & expectations, poor user participation

 “Unforeseen” problems: Budget overruns, Production delays, “That’s not what I asked for”

 Low user acceptance

Requirement Engineering

Introduction

Removal of mistakes post hoc is up to 200 times more costly (Boehm 1981)

A requirement describes a property to be met or a service to be provided by a system.

23

 Functional requirements describe a system’s capabilities and services

 e.g., the ability to transfer money between user accounts

 Non-functional requirements describe the properties of capabilities and the
desired level of services

 e.g., "The Web application shall support at least 2500 concurrent users.“

 Other non-functional requirements refer to project constraints and system
interfaces

 Quality

– Functionality, Usability, Portability, Scalability

– Reliability, Efficiency, Security, Maintainability

 User Interface

– Self-explanatory

Types of Requirements

24

The Requirements Collection Process

Elicitation &

Negotiation

Management

Documentation

Validation &

Verification

• scenario-based methods, multi criteria

decision processes, facilitation techniques,

interviews, or document analysis

• Informal descriptions such as user stories,

and semi-formal descriptions such as use

cases are particularly relevant

• Did we specify the right things? Did we specify

things correctly?

• Continuous changes of requirements and

constraints are a major characteristic

• integration of new requirements and changes

to existing requirements

25

 The intent is to gather detailed requirement collaboratively with all stakeholders

 Define user categories, and develop descriptions for each category.

 Define content and functionality using the lists each person prepared.

 Consider specific constraints and performance issues.

 Write user scenarios for each user class.

 To do this:

 A meeting (either physical or virtual) is conducted and attended by all stakeholders.

 Rules for preparation and participation are established.

 An agenda is suggested that is formal enough to cover all important points but

informal enough to encourage the free flow of ideas.

 A facilitator (can be a customer, a Web engineer, or an outsider) controls the meeting.

 A definition mechanism (can be worksheets, flip charts, or wall stickers or an

electronic bulletin board, chat room, or virtual forum) is used.

Elicitation

26

 Ideally, requirements are defined in sufficient detail to proceed
 BUT, in reality, requirements are often contradictory or infeasible (within the

context of real-world constraints, such as cost or time).

 Negotiation involves working with the stakeholders to balance functionality,
performance, and other product or system characteristics against cost and
delivery time.

 Recognize that it’s not a competition.
 To be successful, both parties have to feel they’ve won or achieved something.

Both will have to compromise.

 Decide what you’d like to achieve, what the other party wants to achieve, and
how you’ll go about making both happen.
 Example: WinWin Approach

Negotiation

https://pdfs.semanticscholar.org/d197/ce494044257eefd788aab19cfad4b7c22dd0.pdf

27

 Interviewing

 Joint Application Design

 Brainstorming

 Concept Mapping

 Storyboard

 Use Case Modeling

 Questionnaires

Techniques for Elicitation & Negotiation

28

 Use informal, semi-formal and formal methods in the description

 4 Categories of Notations

◦ Stories – Plain-language scenarios; understandable to non-technical persons.

◦ Itemized Requirements – Plain-language lists of requirements

◦ Formatted Requirements – Accurately-defined, but allow for plain-language

descriptions, e.g. use cases

◦ Formal Specification – Expressed in formal syntax & semantics; rarely used in Web

applications.

 So, what’s best for a Web development project?

 Formatted requirements (i.e. use cases) and stories are heavily used.

 Scalability is (most likely) important.

Requirements Documentation

29

 This step is essential to verify that requirements specification corresponds to user’s needs

and customer’s requirements

 Iterative feedback from stakeholders is essential

 Is the requirement feasible?

 Do the results meet stakeholders’ expectations?

 e.g., Internet users can be invited to participate in Web surveys to communicate their satisfaction

with a Web application

 Validation Techniques

 Review or walk-through- Reading and correcting the requirements definition documentation and

models

 Traceability Matrix

 Comparison of the application objectives with the requirements of the system

 Prototyping for Validation- Implement a partial set of functional requirements but provide a

global vision of the user interface

Validation

30

Management

 Requirement management is the process of documenting, analyzing, tracing,
prioritizing and agreeing on requirements and then controlling change and
communicating to relevant stakeholders.

 It is a continuous process throughout a project.

 It is an essential to enable, Traceability, Modifiability, and Verifiability

 Requirements traceability is concerned with documenting the life of a
requirement.

 It should be possible to trace back to the origin of each requirement and every change
made to the requirement should therefore be documented in order to achieve
traceability.

 Several tools are available to support Requirements management such as
Accompa, GatherSpace, and Visure Requirements.

 Tool support is crucial for big project 30

https://www.capterra.com/requirements-management-software/

31

 Challenges with Stakeholders (McConnell 996)

 Users don’t know what they want.

 Lack of commitment.

 Ever-expanding requirements.

 Communication delays.

 Users don’t take part in reviews.

 Users don’t understand the technology.

 Users don’t understand the process.

 Challenges with Developers

 Users and engineers/developers speak different “languages”.

 Engineers & developers are also asked to do RE, but sometimes lack negotiating

skills and domain knowledge.

Challenges

32

 Correct- Correspond to actual need

 Unambiguous- Can be interpreted only in one way

 Complete- Any external imposed requirement should be included

 Consistent- Conflicting requirements should be avoided

 Ranked for importance and/or stability
 Requirements are not equally important

 Requirements are not equally stable

 Verifiable-It’s possible to use a cost-effective process to check it

 Modifiable- Can be restructured quickly
 Adopt cross reference

 Requirements are clearly separated

 Traceable- Can be tracked from originating design documentation

Good Requirements Specifications

33

 Multidisciplinary

 multimedia experts, content authors, software architects, usability experts, database
specialists, or domain experts

 Unavailability of stakeholders

 stakeholders (potential Web users) still unknown during RE activities

 project management needs to find suitable representatives that can provide realistic
requirements

 Rapidly changing requirements & constraints

 properties of deployment platforms or communication more difficult in RE for Web
Application

 new development platforms and standards, or new devices for end users

RE Specifics in Web Engineering 1

Is RE for the Web really that different than RE for conventional software?

>> Many aspects of WebApps say that:

34

 Unpredictable operational environment
 e.g., changing bandwidths affect the response time of mobile applications

 Integration of legacy systems
 integration of existing software components

 Web developers have to be aware of the system architecture and architectural
constraints

 Significance of Quality Aspects
 performance

 security

 availability, or usability

 Quality of the User Interface
 IKIWISI (I Know It When I See It) phenomenon

 adding prototypes of important application scenarios

RE Specifics in Web Engineering 2

35

 Quality of Content

 developers have to consider the content, particularly its creation and maintenance

 separating content from layout

 Developer Inexperience

 technologies development tools, standards, languages rapidly developed

 wrong estimates when assessing the feasibility and cost of implementing requirements

 Firm Delivery Dates

 all activities and decisions have to meet a fixed final project deadline

 negotiation and prioritization of requirements are particularly crucial

RE Specifics in Web Engineering 3

36

 Understand the system context

 Web apps are always a component of a larger entity

 Why do we need the system? Purpose and motivation !

 How will people use it? Users !

 Identify and involve the stakeholders

 Who directly influence the requirements

 Get all groups involved.

 What are their expectations?

 May be misaligned or in conflict.

 May be too narrowly focused or unrealistic.

 Balance – one group’s gain should not come at the expense of another.

 Repeat the process of identifying, understanding and negotiating.

Principles for RE of WebApp 1

37

 Iteratively define requirements

 Start with key requirements at a high level; these will serve as the basis for:

 Feasible architectures

 Key system use cases

 Initial plans for the project

 As the project progresses, requirements can become more concrete.

Principles for RE of WebApp 2

 Focusing on the System Architecture

 Twin-Peaks model suggests to refine

both requirements and system

architecture iteratively with increasing

level of detail.

38

 Risk Orientation

 Risk management is at the heart of the analysis process.

 Coming form: Undetected problems, unsolved issues, and conflicts among

requirements

 Examples of risks and possible mitigation:

 Risk: IKIWISI problem>>

Mitigation: Show changes to customer iteratively to collect feedback, develop Prototyping

or wireframes to clarify thing to the customer.

 Risk: Integration issues of existing components/systems>>

Mitigation : early incorporation of external components to avoid late and severe

integration to avoid

Principles for RE of WebApp 3

